Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioorg Med Chem Lett ; 19(19): 5547-51, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19716697

RESUMO

An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency. The most potent analogues inhibit IKKbeta with IC50s as low as 40 nM, suppress LPS-induced TNF-alpha production in vitro and in vivo, display good kinase selectivity profiles, and are active in a HeLa cell NF-kappaB reporter gene assay, demonstrating that they directly interfere with the NF-kappaB signaling pathway.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Animais , Descoberta de Drogas , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
2.
J Med Chem ; 49(10): 2898-908, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16686533

RESUMO

High-throughput screening is routinely employed as a method for the identification of novel hit structures. Large numbers of active compounds are typically procured in this way and must undergo a rigorous validation process. This process is described in detail for a collection of screening hits identified as inhibitors of IkappaB kinase-beta (IKKbeta), a key regulatory enzyme in the nuclear factor-kappaB (NF-kappaB) pathway. From these studies, a promising hit series was selected. Subsequent lead generation activities included the development of a pharmacophore hypothesis and structure-activity relationship (SAR) for the hit series. This led to the exploration of related scaffolds offering additional opportunities, and the various structural classes were comparatively evaluated for enzyme inhibition, selectivity, and drug-like properties. A novel lead series of thienopyridines was thereby established, and this series advanced into lead optimization for further development.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Modelos Moleculares , Piridinas/síntese química , Oxazóis/síntese química , Oxazóis/química , Piridinas/química , Relação Estrutura-Atividade
3.
Nucleic Acids Res ; 32(16): 4758-67, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15356293

RESUMO

RNA-dependent RNA polymerase from respiratory syncytial virus (RSV) is a multi-subunit ribonucleoprotein (RNP) complex that, in addition to synthesizing the full 15 222 nt viral genomic RNA, is able to synthesize all 10 viral mRNAs. We have prepared crude RNP from RSV-infected HEp-2 cells, based on a method previously used for Newcastle disease virus, and established a novel polyadenylation-dependent capture [poly(A) capture] assay to screen for potential inhibitors of RSV transcriptase activity. In this homogeneous assay, radiolabeled full-length polyadenylated mRNAs produced by the viral RNP are detected through capture on immobilized biotinylated oligo(dT) in a 96-well streptavidin-coated FlashPlate. Possible inhibitors identified with this assay could interfere at any step required for the production of complete RSV mRNAs, including transcription, polyadenylation and, potentially, co-transcriptional guanylylation. A specific inhibitor of RSV transcriptase with antiviral activity was identified through screening of this assay.


Assuntos
DNA Polimerase Dirigida por RNA/metabolismo , Vírus Sinciciais Respiratórios/enzimologia , Inibidores da Transcriptase Reversa/análise , Linhagem Celular , Técnicas Genéticas , Humanos , Poliadenilação , RNA Mensageiro/metabolismo , DNA Polimerase Dirigida por RNA/isolamento & purificação , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Gênica
4.
J Virol ; 79(20): 13105-15, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189012

RESUMO

Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5' and 3' ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5' cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/enzimologia , Ribonucleoproteínas/farmacologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Capuzes de RNA/biossíntese , Capuzes de RNA/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Ribonucleoproteínas/administração & dosagem , Ribonucleoproteínas/química , Alinhamento de Sequência , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA