Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 47(3): 434-43, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22727666

RESUMO

Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Tirosina/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Chlorocebus aethiops , Humanos , Camundongos , Chaperonas Moleculares/genética , Células NIH 3T3 , Fosforilação/fisiologia
2.
Mol Cell ; 37(3): 333-43, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159553

RESUMO

Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases. Nonphosphorylatable mutants have normal ATPase activity, support yeast viability, and productively chaperone the Hsp90 client glucocorticoid receptor. Deletion of SWE1 in yeast increases Hsp90 binding to its inhibitor geldanamycin, and pharmacologic inhibition/silencing of Wee1 sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis. These findings demonstrate that Hsp90 chaperoning of distinct client proteins is differentially regulated by specific posttranslational modification of a unique subcellular pool of the chaperone, and they provide a strategy to increase the cellular potency of Hsp90 inhibitors.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Tirosina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Dimerização , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 109(32): 12866-72, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22753480

RESUMO

The "apoptotic ring" is characterized by the phosphorylation of histone H2AX at serine 139 (γ-H2AX) by DNA-dependent protein kinase (DNA-PK). The γ-H2AX apoptotic ring differs from the nuclear foci patterns observed in response to DNA-damaging agents. It contains phosphorylated DNA damage response proteins including activated Chk2, activated ATM, and activated DNA-PK itself but lacks MDC1 and 53BP1, which are required to initiate DNA repair. Because DNA-PK can phosphorylate heat shock protein 90α (HSP90α) in biochemical assays, we investigated whether HSP90α is involved in the apoptotic ring. Here we show that HSP90α is phosphorylated by DNA-PK on threonines 5 and 7 early during apoptosis and that both phosphorylated HSP90α and DNA-PK colocalize in the apoptotic ring. We also show that DNA-PK is a client of HSP90α and that HSP90α is required for full DNA-PK activation, γ-H2AX formation, DNA fragmentation, and apoptotic body formation. In contrast, HSP90 inhibition by geldanamycin markedly enhances TRAIL-induced DNA-PK and H2AX activation. Together, our results reveal that HSP90α is a substrate and chaperone of DNA-PK in the apoptotic response. The response of phosphorylated HSP90α to TRAIL and its localization to the γ-H2AX ring represent epigenetic features of apoptosis that offer insights for studying and monitoring nuclear apoptosis.


Assuntos
Apoptose/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Histonas/metabolismo , Western Blotting , Linhagem Celular Tumoral , Fragmentação do DNA , Proteína Quinase Ativada por DNA/genética , Ativação Enzimática/fisiologia , Citometria de Fluxo , Fluorometria , Humanos , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência , Fosforilação , RNA Interferente Pequeno/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
4.
Stem Cells ; 31(10): 2231-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897677

RESUMO

Exposure to ionizing radiation (IR) can result in the development of cutaneous fibrosis, for which few therapeutic options exist. We tested the hypothesis that bone marrow-derived mesenchymal stem cells (BMSC) would favorably alter the progression of IR-induced fibrosis. We found that a systemic infusion of BMSC from syngeneic or allogeneic donors reduced skin contracture, thickening, and collagen deposition in a murine model. Transcriptional profiling with a fibrosis-targeted assay demonstrated increased expression of interleukin-10 (IL-10) and decreased expression of IL-1ß in the irradiated skin of mice 14 days after receiving BMSC. Similarly, immunoassay studies demonstrated durable alteration of these and several additional inflammatory mediators. Immunohistochemical studies revealed a reduction in infiltration of proinflammatory classically activated CD80(+) macrophages and increased numbers of anti-inflammatory regulatory CD163(+) macrophages in irradiated skin of BMSC-treated mice. In vitro coculture experiments confirmed that BMSC induce expression of IL-10 by activated macrophages, suggesting polarization toward a regulatory phenotype. Furthermore, we demonstrated that tumor necrosis factor-receptor 2 (TNF-R2) mediates IL-10 production and transition toward a regulatory phenotype during coculture with BMSC. Taken together, these data demonstrate that systemic infusion of BMSC can durably alter the progression of radiation-induced fibrosis by altering macrophage phenotype and suppressing local inflammation in a TNF-R2-dependent fashion.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Lesões Experimentais por Radiação/terapia , Dermatopatias/terapia , Animais , Células Cultivadas , Técnicas de Cocultura , Feminino , Expressão Gênica , Mediadores da Inflamação/fisiologia , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Pele/imunologia , Pele/patologia , Pele/efeitos da radiação , Dermatopatias/imunologia , Dermatopatias/metabolismo
5.
Nat Commun ; 15(1): 2485, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509117

RESUMO

Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.


Assuntos
Glicoproteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ubiquitina/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição
6.
Biochim Biophys Acta ; 1823(6): 1092-101, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22504172

RESUMO

The activator of Hsp90 ATPase, Aha1, is an Hsp90 co-chaperone that has been suggested to act as a general stimulator of Hsp90 function. In this report, we have characterized the interaction of Aha1 with Hsp90 and its co-chaperones in rabbit reticulocyte lysate (RRL) and in HeLa cell extracts. Complexes formed by Aha1 with Hsp90 in RRL were stabilized by molybdate and contained the co-chaperones FKBP52 and p23/Sba1, but lacked HOP/Sti1 and Cdc37. Aha1 complexes isolated from HeLa cell extracts also contained Hsp70 and DNAJA1. Over-expression of Aha1 has been reported to stimulate the activity of v-Src and steroid hormone receptors ectopically expressed in yeast, however, no interaction between Aha1 and nascent v-Src or the progesterone receptor could be detected in RRL. Contrary to expectations, over-expression of Aha1 also inhibited the rate of Hsp90-dependent refolding of denatured luciferase. A number of potential client proteins that specifically associated with Aha1 were identified by liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and verified by Western blotting. The proteins identified suggest that Aha1 may play roles in modulating RNA splicing and DNA repair, in addition to other cellular processes.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Extratos Celulares , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HeLa , Humanos , Luciferases/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Ligação Proteica , Renaturação Proteica , Coelhos , Receptores de Progesterona/metabolismo
7.
Aging (Albany NY) ; 14(3): 1068-1086, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35158337

RESUMO

Radiation therapy is a commonly used treatment modality for cancer. Although effective in providing local tumor control, radiation causes oxidative stress, inflammation, immunomodulatory and mitogenic cytokine production, extracellular matrix production, and premature senescence in lung parenchyma. The senescence associated secretory phenotype (SASP) can promote inflammation and stimulate alterations in the surrounding tissue. Therefore, we hypothesized that radiation-induced senescent parenchymal cells in irradiated lung would enhance tumor growth. Using a murine syngeneic tumor model of melanoma and non-small cell lung cancer lung metastasis, we demonstrate that radiation causes a significant increase in markers of premature senescence in lung parenchyma within 4 to 8 weeks. Further, injection of B16F0 (melanoma) or Lewis Lung carcinoma (epidermoid lung cancer) cells at these time points after radiation results in an increase in the number and size of pulmonary tumor nodules relative to unirradiated mice. Treatment of irradiated mice with a senolytic agent (ABT-737) or agents that prevent senescence (rapamycin, INK-128) was sufficient to reduce radiation-induced lung parenchymal senescence and to mitigate radiation-enhanced tumor growth. These agents abrogated radiation-induced expression of 12-Lipoxygenase (12-LOX), a molecule implicated in several deleterious effects of senescence. Deficiency of 12-LOX prevented radiation-enhanced tumor growth. Together, these data demonstrate the pro-tumorigenic role of radiation-induced senescence, introduces the dual TORC inhibitor INK-128 as an effective agent for prevention of radiation-induced normal tissue senescence, and identifies senescence-associated 12-LOX activity as an important component of the pro-tumorigenic irradiated tissue microenvironment. These studies suggest that combining senotherapeutic agents with radiotherapy may decrease post-therapy tumor growth.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Melanoma Experimental , Animais , Araquidonato 12-Lipoxigenase/farmacologia , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Processos de Crescimento Celular , Senescência Celular , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Microambiente Tumoral
8.
Nat Cell Biol ; 6(6): 507-14, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15146192

RESUMO

Tumour cell invasiveness is crucial for cancer metastasis and is not yet understood. Here we describe two functional screens for proteins required for the invasion of fibrosarcoma cells that identified the molecular chaperone heat shock protein 90 (hsp90). The hsp90 alpha isoform, but not hsp90 beta, is expressed extracellularly where it interacts with the matrix metalloproteinase 2 (MMP2). Inhibition of extracellular hsp90 alpha decreases both MMP2 activity and invasiveness. This role for extracellular hsp90 alpha in MMP2 activation indicates that cell-impermeant anti-hsp90 drugs might decrease invasiveness without the concerns inherent in inhibiting intracellular hsp90.


Assuntos
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Fibrossarcoma/fisiopatologia , Proteínas de Choque Térmico HSP90/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica/fisiopatologia , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Fibrossarcoma/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteômica
9.
Mol Pharmacol ; 78(6): 1072-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20813864

RESUMO

Inactivating mutations of the von Hippel-Lindau (VHL) tumor suppressor gene are associated with inherited VHL syndrome, which is characterized by susceptibility to a variety of neoplasms, including central nervous system hemangioblastoma and clear cell renal cell carcinoma (CCRCC). Mutations in the VHL gene are also found in the majority of sporadic clear cell renal carcinoma, the most common malignant neoplasm of the human kidney. Inactivation of VHL ubiquitin ligase is associated with normoxic stabilization of hypoxia-inducible factor-1α and 2-α (HIF-1α and HIF-2α), transcriptional regulators of tumor angiogenesis, invasion, survival, and glucose utilization. HIF-2α has been particularly implicated in the development of CCRCC. Although several inhibitors of HIF-1α have been described, these drugs typically have a minimal affect on HIF-2α. 786-O is a VHL-deficient CCRCC cell line that constitutively expresses only HIF-2α and is therefore suitable for the screening of novel HIF-2α inhibitors. Using this cell line, we have identified emetine as a specific inhibitor of HIF-2α protein stability and transcriptional activity. Without altering HIF-2α mRNA level, emetine rapidly and dramatically down-regulated HIF-2α protein expression in 786-O cells. HIF-2α down-regulation was accompanied by HIF-2α ubiquitination and was reversed by proteasome inhibition. Emetine-induced HIF-2α down-regulation was confirmed in three additional VHL-renal cancer cell lines, was insensitive to the prolyl hydroxylase inhibitor dimethyloxaloyl glycine, and did not require neural precursor cell expressed developmentally down-regulated-8, suggesting that emetine accesses a previously undescribed cullin-independent proteasome degradation pathway for HIF-2α. These data support the use of emetine or structurally related compounds as useful leads for the identification of novel HIF-2α inhibitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Emetina/farmacologia , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos
10.
Int J Radiat Oncol Biol Phys ; 100(2): 344-352, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157749

RESUMO

PURPOSE: Specificity protein 1 (SP1) is involved in the transcription of several genes implicated in tumor maintenance. We investigated the effects of mithramycin A (MTA), an inhibitor of SP1 DNA binding, on radiation response. METHODS AND MATERIALS: Clonogenic survival after irradiation was assessed in 2 tumor cell lines (A549, UM-UC-3) and 1 human fibroblast line (BJ) after SP1 knockdown or MTA treatment. DNA damage repair was evaluated using γH2AX foci formation, and mitotic catastrophe was assessed using nuclear morphology. Gene expression was evaluated using polymerase chain reaction arrays. In vivo tumor growth delay was used to evaluate the effects of MTA on radiosensitivity. RESULTS: Targeting of SP1 with small interfering RNA or MTA sensitized A549 and UM-UC-3 to irradiation, with no effect on the BJ radiation response. MTA did not alter γH2AX foci formation after irradiation in tumor cells but did enhance mitotic catastrophe. Treatment with MTA suppressed transcription of genes involved in cell death. MTA administration to mice bearing A549 and UM-UC-3 xenografts enhanced radiation-induced tumor growth delay. CONCLUSIONS: These results support SP1 as a target for radiation sensitization and confirm MTA as a radiation sensitizer in human tumor models.


Assuntos
Dano ao DNA , Neoplasias Experimentais/radioterapia , Plicamicina/análogos & derivados , Radiossensibilizantes/farmacologia , Fator de Transcrição Sp1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Neoplasias Experimentais/patologia , Plicamicina/farmacologia
11.
Clin Cancer Res ; 24(13): 3137-3148, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599412

RESUMO

Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 µg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Ácido Pirúvico , Animais , Biomarcadores , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glicólise , Xenoenxertos , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Metabolômica/métodos , Camundongos , Consumo de Oxigênio , Ácido Pirúvico/metabolismo
12.
Oncotarget ; 9(12): 10723-10733, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535838

RESUMO

Papillary renal cell carcinomas (PRCC) are a histologically and genetically heterogeneous group of tumors that represent 15-20% of all kidney neoplasms and may require diverse therapeutic approaches. Alteration of the NF2 tumor suppressor gene, encoding a key regulator of the Hippo signaling pathway, is observed in 22.5% of PRCC. The Hippo signaling pathway controls cell proliferation by regulating the transcriptional activity of Yes-Associated Protein, YAP1. Loss of NF2 results in aberrant YAP1 activation. The Src family kinase member Yes also regulates YAP1 transcriptional activity. This study investigated the importance of YAP and Yes activity in three NF2-deficient PRCC cell lines. NF2-deficency correlated with increased expression of YAP1 transcriptional targets and siRNA-based knockdown of YAP1 and Yes1 downregulated this pathway and dramatically reduced cell viability. Dasatinib and saracatinib have potent inhibitory effects on Yes and treatment with either resulted in downregulation of YAP1 transcription targets, reduced cell viability, and G0-G1 cell cycle arrest. Xenograft models for NF2-deficient PRCC also demonstrated reduced tumor growth in response to dasatinib. Thus, inhibiting Yes and the subsequent transcriptional activity of YAP1 had a substantial anti-tumor cell effect both in vitro and in vivo and may provide a viable therapeutic approach for patients with NF2-deficient PRCC.

14.
Int J Radiat Oncol Biol Phys ; 94(5): 1163-72, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26883561

RESUMO

PURPOSE: To determine whether the delivery of recombinant truncated plasminogen activator inhibitor-1 (PAI-1) protein (rPAI-1(23)) would protect from the development of radiation-induced lung injury. METHODS AND MATERIALS: C57Bl/6 mice received intraperitoneal injections of rPAI-1(23) (5.4 µg/kg/d) or vehicle for 18 weeks, beginning 2 days before irradiation (IR) (5 daily fractions of 6 Gy). Cohorts of mice were followed for survival (n=8 per treatment) and tissue collection (n=3 per treatment and time point). Fibrosis in lung was assessed with Masson-Trichrome staining and measurement of hydroxyproline content. Senescence was assessed with staining for ß-galactosidase activity in lung and primary pneumocytes. RESULTS: Hydroxyproline content in irradiated lung was significantly reduced in mice that received rPAI-1(23) compared with mice that received vehicle (IR+vehicle: 84.97 µg/lung; IR+rPAI-1(23): 56.2 µg/lung, P=.001). C57Bl/6 mice exposed to IR+vehicle had dense foci of subpleural fibrosis at 19 weeks, whereas the lungs of mice exposed to IR+rPAI-1(23) were largely devoid of fibrotic foci. Cellular senescence was significantly decreased by rPAI-1(23) treatment in primary pneumocyte cultures and in lung at multiple time points after IR. CONCLUSIONS: These studies identify that rPAI-1(23) is capable of preventing radiation-induced fibrosis in murine lungs. These antifibrotic effects are associated with increased fibrin metabolism, enhanced matrix metalloproteinase-3 expression, and reduced senescence in type 2 pneumocytes. Thus, rPAI-1(23) is a novel therapeutic option for radiation-induced fibrosis.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/uso terapêutico , Fibrose Pulmonar/prevenção & controle , Pneumonite por Radiação/complicações , Proteínas Recombinantes/uso terapêutico , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos da radiação , Animais , Proliferação de Células , Senescência Celular/efeitos da radiação , Colágeno/metabolismo , Citocinas/metabolismo , Feminino , Fibrina/metabolismo , Hidroxiprolina/análise , Hidroxiprolina/metabolismo , Pulmão/metabolismo , Pulmão/efeitos da radiação , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Pneumonite por Radiação/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Sci Rep ; 6: 39714, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004808

RESUMO

Pulmonary fibrosis is a potentially lethal late adverse event of thoracic irradiation. Prior research indicates that unrestrained TGF-ß1 and/or type 2 cytokine-driven immune responses promote fibrosis following radiation injury, but the full spectrum of factors governing this pathology remains unclear. Interleukin 13 (IL-13) is a key factor in fibrotic disease associated with helminth infection, but it is unclear whether it plays a similar role in radiation-induced lung fibrosis. Using a mouse model, we tested the hypothesis that IL-13 drives the progression of radiation-induced pulmonary fibrosis. Irradiated lungs from wild-type c57BL/6NcR mice accumulated alternatively-activated macrophages, displayed elevated levels of IL-13, and extensive fibrosis, whereas IL-13 deficient mice were resistant to these changes. Furthermore, plasma from irradiated wild-type mice showed a transient increase in the IL-13 saturated fraction of the circulating decoy receptor IL-13Rα2. Finally, we determined that therapeutic neutralization of IL-13, during the period of IL-13Rα2 saturation was sufficient to protect mice from lung fibrosis. Taken together, our results demonstrate that IL-13 is a major regulator of radiation-induced lung injury and demonstrates that strategies focusing on IL-13 may be useful in screening for timely delivery of anti-IL-13 therapeutics.


Assuntos
Interleucina-13/farmacologia , Lesão Pulmonar , Fibrose Pulmonar , Lesões Experimentais por Radiação , Animais , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Knockout , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle
16.
Oncotarget ; 6(30): 29963-74, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26298773

RESUMO

Elucidating the targets and mechanism of action of natural products is strategically important prior to drug development and assessment of potential clinical applications. In this report, we elucidated the main targets and mechanism of action of the natural product tonantzitlolone (TZL) in clear cell renal cell carcinoma (CCRCC). We identified TZL as a dual PKCα and PKCθ activator in vitro, although in CCRCC cells its activity was mostly PKCθ-dependent. Through activation of PKCθ, TZL induced an insulin resistant phenotype by inhibiting IRS1 and the PI3K/Akt pathway. Simultaneously, TZL activated the heat shock factor 1 (HSF1) transcription factor driving glucose dependency. Thus, similar to the selective PKCθ activator englerin A, TZL induces a metabolic catastrophe in CCRCC, starving cells of glucose while simultaneously increasing their glycolytic dependency.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diterpenos/farmacologia , Isoenzimas/metabolismo , Compostos Macrocíclicos/farmacologia , Proteína Quinase C/metabolismo , Fatores de Transcrição/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Diterpenos/química , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glucose/farmacologia , Células HEK293 , Fatores de Transcrição de Choque Térmico , Humanos , Immunoblotting , Isoenzimas/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Compostos Macrocíclicos/química , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Proteína Quinase C/genética , Proteína Quinase C-theta , Interferência de RNA , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia , Fatores de Transcrição/genética
17.
PLoS One ; 10(10): e0141786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517842

RESUMO

The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90ß, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90ß with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90ß, while HSP90ß bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/química , Lactamas Macrocíclicas/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor ErbB-2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
18.
Radiat Res ; 182(3): 350-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25117621

RESUMO

Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α(-/-)) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Masson's trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α(-/-) mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α(-/-) mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 µg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α (-/-) mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1ß, IL-4, TNF-α, TGF-ß and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α(-/-) mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α(-/-) mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α(-/-) mice. Treatment of NIH-3T3 fibroblasts with TGF-α resulted in increases in proliferation, collagen production and LOX activity. These studies identify TGF-α as a critical mediator of radiation-induced lung injury and a novel therapeutic target in this setting. Further, these data implicate TGF-α as a mediator of collagen maturation through a TGF-ß independent activation of lysyl oxidase.


Assuntos
Pulmão/efeitos da radiação , Lesões por Radiação/etiologia , Fator de Crescimento Transformador alfa/fisiologia , Animais , Colágeno/metabolismo , Citocinas/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteína-Lisina 6-Oxidase/metabolismo , Fibrose Pulmonar/etiologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia
19.
Int J Oncol ; 42(6): 2028-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23588995

RESUMO

The inhibition of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway through the suppression of mutated Ras or MAPK/extracellular signal-regulated kinase 1/2 (MEK1/2) has been shown to sensitize tumor cells to ionizing radiation (IR). The molecular mechanisms of this sensitization however, are not yet fully understood. In this study, we investigated the role of transforming growth factor-α (TGF-α) in the radiosensitizing effects of selumetinib, a selective inhibitor of MEK1/2. The expression of epidermal growth factor receptor (EGFR) ligands was assessed by ELISA in both Ras wild-type and Ras mutant cells that were exposed to radiation with or without selumetinib. The effects of selumetinib on the TGF-α/EGFR signaling cascade in response to radiation were examined by western blot analysis, clonogenic assay and by determing the yield of mitotic catastrophe. The treatment of cells with selumetinib reduced the basal and IR-induced secretion of TGF-α in both Ras wild-type and Ras mutant cell lines in vitro and in vivo. The reduction of TGF-α secretion was accompanied with a reduction in phosphorylated tumor necrosis factor-α converting enzyme (TACE) in the cells treated with selumetinib with or without IR. The treatment of cells with selumetinib with or without IR inhibited the phosphorylation of EGFR and checkpoint kinase 2 (Chk2), and reduced the expression of survivin. Supplementation with exogenous TGF-α partially rescued the selumetinib-treated cells from IR-induced cell death, restored EGFR and Chk2 phosphorylation and increased survivin expression. These data suggest that the inhibition of MEK1/2 with selumetinib may provide a mechanism to sensitize tumor cells to IR in a fashion that prevents the activation of the TGF-α autocrine loop following IR.


Assuntos
Benzimidazóis/farmacologia , Receptores ErbB/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Neoplasias/radioterapia , Radiossensibilizantes/farmacologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Ligantes , Camundongos , Camundongos Nus , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
20.
Oncotarget ; 4(7): 1065-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23867252

RESUMO

Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes that facilitates the conformational maturation and function of a diverse protein clientele, including aberrant and/or over-expressed proteins that are involved in cancer growth and survival. A role for Hsp90 in supporting the protein homeostasis of cancer cells has buoyed interest in the utility of Hsp90 inhibitors as anti-cancer drugs. Despite the fact that all clinically evaluated Hsp90 inhibitors target an identical nucleotide-binding pocket in the N domain of the chaperone, the precise determinants that affect drug binding in the cellular environment remain unclear, and it is possible that chemically distinct inhibitors may not share similar binding preferences. Here we demonstrate that two chemically unrelated Hsp90 inhibitors, the benzoquinone ansamycin geldanamycin and the purine analog PU-H71, select for overlapping but not identical subpopulations of total cellular Hsp90, even though both inhibitors bind to an amino terminal nucleotide pocket and prevent N domain dimerization. Our data also suggest that PU-H71 is able to access a broader range of N domain undimerized Hsp90 conformations than is geldanamycin and is less affected by Hsp90 phosphorylation, consistent with its broader and more potent anti-tumor activity. A more complete understanding of the impact of the cellular milieu on small molecule inhibitor binding to Hsp90 should facilitate their more effective use in the clinic.


Assuntos
Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/farmacologia , Processamento de Proteína Pós-Traducional , Purinas/metabolismo , Purinas/farmacologia , Benzodioxóis/química , Benzoquinonas/química , Sítios de Ligação , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Lactamas Macrocíclicas/química , Fosforilação , Ligação Proteica , Conformação Proteica , Purinas/química , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA