Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosurg ; 118(2): 370-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23140154

RESUMO

OBJECT: In patients who have sustained a traumatic brain injury (TBI), hypothermia therapy has not shown efficacy in multicenter clinical trials. Armed with the post hoc data from the latest clinical trial (National Acute Brain Injury Study: Hypothermia II), the authors hypothesized that hypothermia may be beneficial in an acute subdural hematoma (SDH) rat model by blunting the effects of ischemia/reperfusion injury. The major aim of this study was to test the efficacy of temperature management in reducing brain damage after acute SDH. METHODS: The rats were induced with acute SDH and placed into 1 of 4 groups: 1) normothermia group (37°C); 2) early hypothermia group, head and body temperature reduced to 33°C 30 minutes prior to craniotomy; 3) late hypothermia group, temperature lowered to 33°C 30 minutes after decompression; and 4) sham group, no acute SDH (only craniotomy with normothermia). To assess for neuronal and glial cell damage, the authors analyzed microdialysate concentrations of GFAP and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) by using a 100-kD probe. Fluoro-Jade B-positive neurons and injury volume with 2,3,5-triphenyltetrazolium chloride staining were also measured. RESULTS: In the early phase of reperfusion (30 minutes, 2.5 hours after decompression), extracellular UCH-L1 in the early hypothermia group was significantly lower than in the normothermia group (early, 4.9 ± 1.0 ng/dl; late, 35.2 ± 12.1 ng/dl; normothermia, 50.20 ± 28.3 ng/dl; sham, 3.1 ± 1.3 ng/dl; early vs normothermia, p < 0.01; sham vs normothermia, p < 0.01, analyzed using ANOVA followed by a post hoc Bonferroni test). In the late phase of reperfusion (> 2.5 hours after decompression), extracellular GFAP in the early hypothermia group was also lower than in the normothermia and late hypothermia groups (early, 5.5 ± 2.9 ng/dl; late, 7.4 ± 3.4 ng/dl; normothermia, 15.3 ± 8.4 ng/dl; sham, 3.3 ± 1.0 ng/dl; normothermia vs sham; p < 0.01). The number of Fluoro-Jade B-positive cells in the early hypothermia group was significantly smaller than that in the normothermia group (normothermia vs early: 774,588 ± 162,173 vs 180,903 ± 42,212, p < 0.05). Also, the injury area and volume were smaller in the early hypothermia group in which hypothermia was induced before craniotomy and cerebral reperfusion (early, 115.2 ± 15.4 mm(3); late, 344.7 ± 29.1 mm(3); normothermia, 311.2 ± 79.2 mm(3); p < 0.05). CONCLUSIONS: The data suggest that early, preoperatively induced hypothermia could mediate the reduction of neuronal and glial damage in the reperfusion phase of ischemia/reperfusion brain injury.


Assuntos
Descompressão Cirúrgica , Hematoma Subdural Agudo/patologia , Hematoma Subdural Agudo/cirurgia , Hipotermia Induzida/métodos , Cuidados Pré-Operatórios/métodos , Animais , Biomarcadores/metabolismo , Contagem de Células/métodos , Modelos Animais de Doenças , Fluoresceínas , Corantes Fluorescentes , Proteína Glial Fibrilar Ácida/metabolismo , Hematoma Subdural Agudo/metabolismo , Masculino , Microdiálise , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Compostos Orgânicos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/metabolismo
2.
J Neurotrauma ; 30(13): 1161-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23409698

RESUMO

The goal of this project was to determine whether biochemical markers of brain damage can be used to diagnose and assess the severity of injury in a rat model of penetrating ballistic-like brain injury (PBBI). To determine the relationship between injury magnitude and biomarker levels, rats underwent three discrete PBBI severity levels defined by the magnitude of the ballistic component of the injury, calibrated to equal 5%, 10%, or 12.5% of total rat brain volume. Cortex, cerebrospinal fluid (CSF), and blood were collected at multiple time points. Levels of three biomarkers (αII-spectrin breakdown product [SBDP150], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1 [UCH-L1]), were measured using quantitative immunoblotting and/or enzyme-linked immunosorbent assays. In injured cortex, SBDP150 and GFAP levels were increased significantly over controls. Cortical SBDP150 was elevated at 1 day but not 7 days, and GFAP at 7 days but not 1 day. At their respective time points, mean levels of SBDP150 and GFAP biomarkers in the cortex rose stepwise as injury magnitude increased. In the CSF, increasing severity of PBBI was associated with increasing concentrations of both neuronal and glial biomarkers acutely at 1 day after injury, but no trends were observed at 7 days. In plasma, SBDP150 was elevated at 5 min after 10% PBBI and at 6 h after 12.5% PBBI. UCH-L1 levels in plasma were elevated acutely at 5 min post-injury reflecting injury severity and rapidly decreased within 2 h. Overall, our results support the conclusion that biomarkers are effective indicators of brain damage after PBBI and may also aid in the assessment of injury magnitude.


Assuntos
Biomarcadores/análise , Proteína Glial Fibrilar Ácida/análise , Traumatismos Cranianos Penetrantes/metabolismo , Espectrina/análise , Ubiquitina Tiolesterase/análise , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA