RESUMO
Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Células Endoteliais/metabolismo , Ativação do Canal Iônico , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células COS , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular , Hipóxia Celular , Chlorocebus aethiops , Cisteína , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Metabolismo Energético , Glutationa/metabolismo , Células HEK293 , Células HeLa , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Mutação , Oxirredução , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Trombina/farmacologia , Fatores de Tempo , TransfecçãoRESUMO
Mitochondrial Ca2+ uniporter (MCU)-mediated Ca2+ uptake promotes the buildup of reducing equivalents that fuel oxidative phosphorylation for cellular metabolism. Although MCU modulates mitochondrial bioenergetics, its function in energy homeostasis in vivo remains elusive. Here we demonstrate that deletion of the Mcu gene in mouse liver (MCUΔhep) and in Danio rerio by CRISPR/Cas9 inhibits mitochondrial Ca2+ (mCa2+) uptake, delays cytosolic Ca2+ (cCa2+) clearance, reduces oxidative phosphorylation, and leads to increased lipid accumulation. Elevated hepatic lipids in MCUΔhep were a direct result of extramitochondrial Ca2+-dependent protein phosphatase-4 (PP4) activity, which dephosphorylates AMPK. Loss of AMPK recapitulates hepatic lipid accumulation without changes in MCU-mediated Ca2+ uptake. Furthermore, reconstitution of active AMPK, or PP4 knockdown, enhances lipid clearance in MCUΔhep hepatocytes. Conversely, gain-of-function MCU promotes rapid mCa2+ uptake, decreases PP4 levels, and reduces hepatic lipid accumulation. Thus, our work uncovers an MCU/PP4/AMPK molecular cascade that links Ca2+ dynamics to hepatic lipid metabolism.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Proteínas Mitocondriais/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Canais de Cálcio/genética , Células Cultivadas , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Peixe-ZebraRESUMO
Mitochondria shape cytosolic calcium ([Ca2+]c) transients and utilize the mitochondrial Ca2+ ([Ca2+]m) in exchange for bioenergetics output. Conversely, dysregulated [Ca2+]c causes [Ca2+]m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca2+ uptake exhibited elevated [Ca2+]c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca2+-induced shape change that is distinct from mitochondrial fission and swelling. [Ca2+]c elevation, but not MCU-mediated Ca2+ uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca2+-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca2+ sensor that decodes metazoan Ca2+ signals as MiST.