Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4192-4202, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917475

RESUMO

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.


Assuntos
Doxorrubicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Humanos , Animais , Camundongos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Acrilamidas/química , Acrilamidas/farmacologia , Concentração de Íons de Hidrogênio
2.
J Reconstr Microsurg ; 39(4): 311-319, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35817403

RESUMO

BACKGROUND: Lymphedema is a chronic condition characterized by progressive edema with complicated treatment. Recently, new treatment strategies inducing lymphangiogenesis were proposed. The aim of our study was to examine the effect of vascular endothelial growth factor C (VEGF-C) and adipose-derived stem cells (ADSCs) on lymphatic regeneration and drainage re-establishment in vascularized lymph node transfer (VLNT) model using a pedicled vascularized lymph node (VLN) groin flap. METHODS: Female Lewis rats with groin VLN flaps were utilized as a lymphedema model. Group A served as the control. Group B received VEGF-C. Group C received both VEGF-C and ADSCs. Group D received ADSCs only. Lymphatic drainage re-establishment was evaluated by ultrasound-photoacoustic imaging (US-PAI) after indocyanine green (ICG) injection. RESULTS: The fastest regeneration of elevated flaps was observed in Groups B and C in all monitored periods. After the first month, ICG positivity was detected in 14.3% of animals in Group A, 71.43% of animals in Group B (odds ratio [OR] = 15; p = 0.048), and 83.33% in Group C (OR = 30; p = 0.027). On the contrary, the difference between control group and Group D (16.67%; p = 0.905) was statistically insignificant. Administration of VEGF-C, ADSC + VEGF-C, and ADSC led to full flap regeneration after 6 months. The control group had the lowest percentage of ICG positivity at all monitored time points. CONCLUSION: We found that the fastest regeneration occurred with the combination of the VLN flap and VEGF-C. The addition of ADSC had an insignificant effect in our study. Furthermore, we proved the feasibility of PAI as an assessment tool of the lymphatic drainage recovery in a VLNT model.


Assuntos
Linfedema , Fator C de Crescimento do Endotélio Vascular , Ratos , Feminino , Animais , Ratos Endogâmicos Lew , Linfonodos/irrigação sanguínea , Linfedema/cirurgia , Linfedema/etiologia , Verde de Indocianina , Regeneração , Células-Tronco
3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890804

RESUMO

Widely used classical angiography with the use of iodine contrast agents is highly problematic, particularly in patients with diabetes mellitus, cardiac and pulmonary diseases, or degree III or IV renal insufficiency. Some patients may be susceptible to allergic reaction to the iodine contrast substance. The intravenous injection of a bolus of CO2 (negative contrast) is an alternative method, which is, however, currently only used for imaging blood vessels of the lower limbs. The aim of our project was to design and test on an animal model a methodology for injecting the CO2 foam which would minimize the possibility of embolization of the brain tissue and heart infarction, leading to their damage. This is important research for the further promotion of the use of CO2, which is increasingly important for endovascular diagnosis and treatment, because carbon-dioxide-related complications are extremely rare. CO2 foam was prepared by the rapid mixing in a 2:1 ratio of CO2 and fetal bovine serum (FBS)-enriched Dulbecco's Modified Eagle Medium (DMEM). Freshly prepared CO2 foam was administered into the catheterized rat tail vein or cannulated rat abdominal aorta and inferior vena cava (IVC). CO2 foam was compared with commercially available microbubbles (lipid shell/gas core). The rat heart in its parasternal long axis was imaged in B-Mode and Non-linear Contrast Mode before/during and after the contrast administration. Samples of the brain, heart and lungs were collected and subjected to histological examination. The non-linear contrast imaging method enables the imaging of micron-sized gas microbubbles inside a rat heart. The significantly shorter lifetime of the prepared CO2 foam is a benefit for avoiding the local ischemia of tissues.


Assuntos
Dióxido de Carbono , Iodo , Angiografia , Animais , Dióxido de Carbono/efeitos adversos , Meios de Contraste , Microbolhas , Ratos
4.
Biomacromolecules ; 21(4): 1437-1449, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32083473

RESUMO

The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.


Assuntos
Doxorrubicina , Neoplasias , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Camundongos , Micelas , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Microambiente Tumoral
5.
Stem Cells ; 36(8): 1237-1248, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29603838

RESUMO

Transgenic mice expressing green fluorescent protein (GFP) are useful in transplantation experiments. When we used ubiquitin-GFP (UBC-GFP) transgenic mice to study the availability of niches for transplanted hematopoietic stem and progenitor cells, the results were strikingly different from the corresponding experiments that used congenic mice polymorphic in the CD45 antigen. Analysis of these unexpected results revealed that the hematopoiesis of UBC-GFP mice was outcompeted by the hematopoiesis of wild-type (WT) mice. Importantly, UBC-GFP mice engrafted the transplanted bone marrow of WT mice without conditioning. There was a significant bias toward lymphopoiesis in the WT branch of chimeric UBC-GFP/WT hematopoiesis. A fraction of immature Sca-1+ cells in the spleen of UBC-GFP mice expressed GFP at a very high level. The chimeric hematopoiesis was stable in the long term and also after transplantation to secondary recipient mice. The article thus identifies a specific defect in the hematopoiesis of UBC-GFP transgenic mice that compromises the lymphoid-primed hematopoietic stem cells in the bone marrow and spleen. Stem Cells 2018;36:1237-1248.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/metabolismo , Ubiquitina/metabolismo , Animais , Medula Óssea/metabolismo , Quimera , Hematopoese , Linfopoese , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/metabolismo , Esplenectomia , Timo/metabolismo
6.
Nucl Med Biol ; 130-131: 108890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402673

RESUMO

BACKGROUND: Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS: In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION: This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.


Assuntos
Nanopartículas , Compostos Radiofarmacêuticos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Chumbo , Radioisótopos/uso terapêutico
7.
ACS Appl Mater Interfaces ; 16(5): 5666-5676, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278776

RESUMO

We report the design, synthesis, and in vitro evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. In vitro experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state). The illumination process led to the dissociation of the micelles and the concomitant release of iron species, triggering cytotoxicity.


Assuntos
Antineoplásicos , Compostos Ferrosos , Micelas , Metalocenos/farmacologia , Fototerapia
8.
Biol Blood Marrow Transplant ; 19(5): 713-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23422843

RESUMO

Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Animais , Transplante de Medula Óssea/métodos , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Irradiação Corporal Total/métodos
9.
Purinergic Signal ; 9(2): 207-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23242571

RESUMO

This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N (6)-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N (6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Multipotentes/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Animais , Citometria de Fluxo , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia
10.
Adv Healthc Mater ; 12(28): e2301183, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37288946

RESUMO

Nano-sized carriers are widely studied as suitable candidates for the advanced delivery of various bioactive molecules such as drugs and diagnostics. Herein, the development of long-circulating stimuli-responsive polymer nanoprobes tailored for the fluorescently-guided surgery of solid tumors is reported. Nanoprobes are designed as long-circulating nanosystems preferably accumulated in solid tumors due to the Enhanced permeability and retention effect, so they act as a tumor microenvironment-sensitive activatable diagnostic. This study designs polymer probes differing in the structure of the spacer between the polymer carrier and Cy7 by employing pH-sensitive spacers, oligopeptide spacers susceptible to cathepsin B-catalyzed enzymatic hydrolysis, and non-degradable control spacer. Increased accumulation of the nanoprobes in the tumor tissue coupled with stimuli-sensitive release behavior and subsequent activation of the fluorescent signal upon dye release facilitated favorable tumor-to-background ratio, a key feature for fluorescence-guided surgery. The probes show excellent diagnostic potential for the surgical removal of intraperitoneal metastasis and orthotopic head and neck tumors with very high efficacy and accuracy. In addition, the combination of macroscopic resection followed by fluorescence-guided surgery using developed probes enable the identification and resection of most of the CAL33 intraperitoneal metastases with total tumor burden reduced to 97.2%.


Assuntos
Neoplasias de Cabeça e Pescoço , Polímeros Responsivos a Estímulos , Humanos , Fluorescência , Corantes Fluorescentes/química , Polímeros , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/cirurgia , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Colloids Surf B Biointerfaces ; 231: 113564, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742364

RESUMO

Bioactive moieties designed to bind to cell membrane receptors benefit from coupling with polymeric carriers that have enhanced affinity to the cell membrane. When bound to the cell surface, such carriers create a "2D solution" of a ligand with a significantly increased concentration near a membrane-bound receptor compared to a freely water-soluble ligand. Bifunctional polymeric carriers based on amphiphilic triblock copolymers were synthesized from 2-pent-4-ynyl oxazoline, 2-nonyl oxazoline and 2-ethyl oxazoline. Their self-assembly and interactions with plasma proteins and HEK 293 cells were studied in detail. The affinity of these triblock copolymers to HEK 293 cell membranes and organ tissues was tunable by the overall hydrophobicity of the polymer molecule, which is determined by the length of the hydrophobic and hydrophilic blocks. The circulation time and biodistribution of three representative triblock copolymers were monitored after intravenous administration to C57BL/6 albino mice. A prolonged circulation time was observed for polymers with longer hydrophobic blocks, despite their molecular weight being below the renal threshold.


Assuntos
Micelas , Polímeros , Humanos , Camundongos , Animais , Polímeros/química , Células HEK293 , Ligantes , Distribuição Tecidual , Interações Hidrofóbicas e Hidrofílicas , Membrana Celular , Citoplasma
12.
Haematologica ; 102(4): e152-e155, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057744
13.
JACC Cardiovasc Imaging ; 15(2): 181-189, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34419390

RESUMO

OBJECTIVES: This paper sought to evaluate the occurrence of decompression sickness (DCS) after the application of a patent foramen ovale (PFO) screening and risk stratification strategy. BACKGROUND: PFO is associated with an increased risk of DCS. Recently, transcatheter closure was reported to reduce DCS occurrence in divers with a high-grade shunt. However, to date, there are no data regarding the effectiveness of any PFO screening and risk stratification strategy for divers. METHODS: A total of 829 consecutive divers (age 35.4 ± 10.0 years, 81.5% men) were screened for PFO by means of transcranial color-coded sonography in the DIVE-PFO (Decompression Illness Prevention in Divers with a Patent Foramen Ovale) registry. Divers with a high-grade PFO were offered either catheter-based PFO closure (the closure group) or advised conservative diving (high grades). Divers with a low-grade shunt were advised conservative diving (low grades), whereas those with no PFO continued unrestricted diving (controls). A telephone follow-up was performed. To study the effect of the screening and risk stratification strategy, DCS occurrence before enrollment and during the follow-up was compared. RESULTS: Follow-up was available for 748 (90%) divers. Seven hundred and 2 divers continued diving and were included in the analysis (mean follow-up 6.5 ± 3.5 years). The DCS incidence decreased significantly in all groups, except the controls. During follow-up, there were no DCS events in the closure group; DCS incidence was similar to the controls in the low-grade group (HR: 3.965; 95% CI: 0.558-28.18; P = 0.169) but remained higher in the high-grade group (HR: 26.170; 95% CI: 5.797-118.160; P < 0.0001). CONCLUSIONS: The screening and risk stratification strategy using transcranial color-coded sonography was associated with a decrease in DCS occurrence in divers with PFO. Catheter-based PFO closure was associated with a DCS occurrence similar to the controls; the conservative strategy had a similar effect in the low-grade group, but in the high-grade group the DCS incidence remained higher than in all other groups.


Assuntos
Doença da Descompressão , Forame Oval Patente , Adulto , Doença da Descompressão/diagnóstico por imagem , Doença da Descompressão/epidemiologia , Doença da Descompressão/etiologia , Feminino , Forame Oval Patente/complicações , Forame Oval Patente/diagnóstico por imagem , Forame Oval Patente/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sistema de Registros , Medição de Risco
14.
Free Radic Biol Med ; 187: 132-140, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618181

RESUMO

Radiation resistance of cancer cells represents one of the major challenges in cancer treatment. The novel self-assembled fluoralkylated diselenide nanoparticles (fluorosomes) based on seleno-l-cystine (17FSe2) possess redox-active properties that autocatalytically decompose hydrogen peroxide (H2O2) and oxidize the intracellular glutathione (GSH) that results in regulation of cellular oxidative stress. Alkylfluorinated diselenide nanoparticles showed a significant cytotoxic and radiosensitizing effect on cancer cells. The EL-4 tumor-bearing C56BL/6 mice treated with 17FSe2 followed by fractionated radiation treatment (4 × 2Gy) completely suppressed tumor growth. Our results suggest that described diselenide system behaves as a potent radiosensitizer agent targeting tumor growth and preventing tumor recurrence.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Radiossensibilizantes , Animais , Glutationa , Peróxido de Hidrogênio , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Oxirredução , Radiossensibilizantes/farmacologia
15.
Adv Healthc Mater ; 11(22): e2201344, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36153823

RESUMO

Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.


Assuntos
Polímeros , Água , Camundongos , Animais , Distribuição Tecidual , Temperatura , Liberação Controlada de Fármacos
16.
Biol Blood Marrow Transplant ; 17(9): 1273-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21767513

RESUMO

Hematopoietic stem and progenitor cells (HSPC) for bone marrow transplantation are currently obtained directly from living voluntary donors or from cord blood units. However, a suitable donor is not always found. Because HSPC are known for their relative resistance to hypoxia, using an experimental murine model, we explored cadaveric bone marrow (BM) as their alternative source. After donor mice were sacrificed, BM was left in intact femurs at 37°C, 20°C, or 4°C under ischemic conditions, resulting in combined oxygen and metabolic substrate shortage and the accumulation of metabolic waste products. BM cells were harvested after a set time period ranging from 0 to 48 hours. To determine the impact of delayed harvesting on the transplantability of HSPC, a competitive repopulation assay using a murine Ly5.1/Ly5.2 congenic model in 2 different settings was used: after submyeloablative (6 Gy) or myeloablative (9 Gy) total-body irradiation, Ly5.2 hosts received cadaveric Ly5.1 cells or a mixture of cadaveric Ly5.1 cells and fresh Ly5.2 cells in a 1:1 ratio. Chimerism resulting from cadaveric donor cells, followed up to 6 months after transplantation, proved that the long-term repopulation ability of HSPC was fully preserved for 2 hours, 6 hours, and 12 hours at 37°C, 20°C, and 4°C of ischemia, respectively. A colony-forming unit-spleen (CFU-S) clonogenic assay revealed a higher sensitivity of proliferating hematopoietic progenitors to ischemia compared to repopulating cells (STRC and LTRC). Flow cytometry analysis of apoptosis in cadaveric BM demonstrated that the LSK (Lin(low)Sca-1(+)c-Kit(+)) subpopulation, enriched in HSPC, contained less apoptotic and dead cells than the BM as a whole. Furthermore, the number of LSK SLAM (CD150(+)CD48(-)) and LSK SP (side population) cells (fractions highly enriched in hematopoietic stem cells) decreased in parallel with BM transplantability. As well as cadaveric BM cells, we also tested the transplantability and survival of BM cells after storage in a suspension in vitro without specific hematopoietic growth factors. HSPC did not display any decrease in transplantability after 2 days of storage at 37°C or 4 days at 4°C. A higher sensitivity of progenitors to unfavorable conditions was observed again using CFU-S and granulocyte macrophage-colony forming cell (GM-CFC) assays, especially at 37°C. This paper shows that HSPC survive the cessation of circulation for a considerable time and maintain their engraftment potential. This time is significantly extended with in vitro storage compared to the cadaveric BM.


Assuntos
Transplante de Medula Óssea , Sobrevivência Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Preservação de Tecido , Animais , Medula Óssea , Cadáver , Células-Tronco Hematopoéticas/fisiologia , Humanos , Hipóxia , Isquemia , Camundongos , Preservação Biológica , Irradiação Corporal Total
18.
Ultrasound Med Biol ; 47(4): 1099-1107, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33455807

RESUMO

Tumor oxygenation and vascularization are important parameters that determine the aggressiveness of the tumor and its resistance to cancer therapies. We introduce dual-modality ultrasound and photoacoustic imaging (US-PAI) for the direct, non-invasive real-time in vivo evaluation of oxygenation and vascularization of patient-derived xenografts (PDXs) of B-cell mantle cell lymphomas. The different optical properties of oxyhemoglobin and deoxyhemoglobin make it possible to determine oxygen saturation (sO2) in tissues using PAI. High-frequency color Doppler imaging enables the visualization of blood flow with high resolution. Tumor oxygenation and vascularization were studied in vivo during the growth of three different subcutaneously implanted patient-derived xenograft (PDX) lymphomas (VFN-M1, VFN-M2 and VFN-M5 R1). Similar values of sO2 (sO2 Vital), determined from US-PAI volumetric analysis, were obtained in small and large VFN-M1 tumors ranging from 37.9 ± 2.2 to 40.5 ± 6.0 sO2 Vital (%) and 37.5 ± 4.0 to 35.7 ± 4.6 sO2 Vital (%) for small and large VFN-M2 PDXs. In contrast, the higher sO2 Vital values ranging from 57.1 ± 4.8 to 40.8 ± 5.7 sO2 Vital (%) (small to large) of VFN-M5 R1 tumors corresponds with the higher aggressiveness of that PDX model. The different tumor percentage vascularization (assessed as micro-vessel areas) of VFN-M1, VFN-M2 and VFN-M5 R1 obtained by color Doppler (2.8 ± 0.1%, 3.8 ± 0.8% and 10.3 ± 2.7%) in large-stage tumors clearly corresponds with their diverse growth and aggressiveness. The data obtained by color Doppler were validated by histology. In conclusion, US-PAI rapidly and accurately provided relevant and reproducible information on tissue oxygenation in PDX tumors in real time without the need for a contrast agent.


Assuntos
Linfoma de Célula do Manto/diagnóstico por imagem , Linfoma de Célula do Manto/fisiopatologia , Neovascularização Patológica/diagnóstico por imagem , Oxigênio/metabolismo , Técnicas Fotoacústicas , Ultrassonografia Doppler em Cores , Animais , Hipóxia Celular , Feminino , Hemoglobinas/metabolismo , Humanos , Linfoma de Célula do Manto/patologia , Camundongos , Densidade Microvascular , Microvasos/diagnóstico por imagem , Imagem Multimodal , Transplante de Neoplasias , Oxiemoglobinas/metabolismo , Carga Tumoral
19.
Mater Sci Eng C Mater Biol Appl ; 126: 111865, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082926

RESUMO

Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Р= 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Р= 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.


Assuntos
Peróxido de Hidrogênio , Tensoativos , Animais , Camundongos , Nanogéis , Peptídeos , Polietilenoglicóis , Polietilenoimina , Distribuição Tecidual
20.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578773

RESUMO

Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio nPy:nOxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (nPy:nOxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (nPy:nAPS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA