Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Rev Lett ; 117(9): 096805, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610875

RESUMO

Hybridization-related modifications of the first metal layer of a metal-organic interface are difficult to access experimentally and have been largely neglected so far. Here, we study the influence of specific chemical bonds (as formed by the organic molecules CuPc and PTCDA) on a Pb-Ag surface alloy. We find that delocalized van der Waals or weak chemical π-type bonds are not strong enough to alter the alloy, while localized σ-type bonds lead to a vertical displacement of the Pb surface atoms and to changes in the alloy's surface band structure. Our results provide an exciting platform for tuning the Rashba-type spin texture of surface alloys using organic molecules.

2.
Clin Oral Investig ; 17(6): 1619-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23053706

RESUMO

OBJECTIVE: The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. MATERIAL AND METHODS: Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. RESULTS: Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p < 0.001). Additionally, the mean SFR 6 months after RT of group A was significantly higher than the mean SFR of group C (p < 0.01). CONCLUSIONS: Irradiation damage on dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. CLINICAL RELEVANCE: Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Tratamentos com Preservação do Órgão , Glândula Parótida/efeitos da radiação , Dente/efeitos da radiação , Adulto , Idoso , Assistência Odontológica para Doentes Crônicos , Cárie Dentária/etiologia , Feminino , Seguimentos , Previsões , Fidelidade a Diretrizes , Humanos , Imageamento Tridimensional/métodos , Irradiação Linfática , Masculino , Pessoa de Meia-Idade , Planejamento de Assistência ao Paciente , Guias de Prática Clínica como Assunto , Estudos Prospectivos , Lesões por Radiação/etiologia , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Saliva/metabolismo , Saliva/efeitos da radiação , Taxa Secretória/efeitos da radiação
3.
J Phys Condens Matter ; 31(13): 134005, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30625428

RESUMO

The successful implementation of nanoscale materials in next generation optoelectronic devices crucially depends on our ability to functionalize and design low dimensional materials according to the desired field of application. Recently, organic adsorbates have revealed an enormous potential to alter the occupied surface band structure of tunable materials by the formation of tailored molecule-surface bonds. Here, we extend this concept of adsorption-induced surface band structure engineering to the unoccupied part of the surface band structure. This is achieved by our comprehensive investigation of the unoccupied band structure of a lead (Pb) monolayer film on the Ag(1 1 1) surface prior and after the adsorption of one monolayer of the aromatic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using two-photon momentum microscopy, we show that the unoccupied states of the Pb/Ag(1 1 1) bilayer system are dominated by a parabolic quantum well state (QWS) in the center of the surface Brillouin zone with Pb p[Formula: see text] orbital character and a side band with almost linear dispersion showing Pb p[Formula: see text] orbital character. After the adsorption of PTCDA, the Pb side band remains completely unaffected while the signal of the Pb QWS is fully suppressed. This adsorption induced change in the unoccupied Pb band structure coincides with an interfacial charge transfer from the Pb layer into the PTCDA molecule. We propose that this charge transfer and the correspondingly vertical (partially chemical) interaction across the PTCDA/Pb interface suppresses the existence of the QWS in the Pb layer. Our results hence unveil a new possibility to orbital selectively tune and control the entire surface band structure of low dimensional systems by the adsorption of organic molecules.

4.
Nat Commun ; 6: 10167, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658826

RESUMO

Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA