Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 39(10): 1881-1891, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30622167

RESUMO

Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.


Assuntos
Potenciais de Ação , Pressão Intraocular/fisiologia , Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL
2.
Biol Psychiatry ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38401802

RESUMO

BACKGROUND: The zona incerta (ZI) is a subcortical structure primarily investigated in rodents that is implicated in various behaviors, ranging from motor control to survival-associated activities, partly due to its integration in multiple neural circuits. In the current study, we used diffusion magnetic resonance imaging tractography to segment the ZI and gain insight into its connectivity in various circuits in humans. METHODS: We performed probabilistic tractography in 7T diffusion MRI on 178 participants from the Human Connectome Project to validate the ZI's anatomical subdivisions and their respective tracts. K-means clustering segmented the ZI based on each voxel's connectivity profile. We further characterized the connections of each ZI subregion using probabilistic tractography with each subregion as a seed. RESULTS: We identified 2 dominant clusters that delineated the whole ZI into rostral and caudal subregions. The caudal ZI primarily connected with motor regions, while the rostral ZI received a topographic distribution of projections from prefrontal areas, notably the anterior cingulate and medial prefrontal cortices. We generated a probabilistic ZI atlas that was registered to a patient-participant's magnetic resonance imaging scan for placement of stereoencephalographic leads for electrophysiology-guided deep brain stimulation to treat their obsessive-compulsive disorder. Rostral ZI stimulation improved the patient's core symptoms (mean improvement 21%). CONCLUSIONS: We present a tractography-based atlas of the rostral and caudal ZI subregions constructed using high-resolution diffusion magnetic resonance imaging from 178 healthy participants. Our work provides an anatomical foundation to explore the rostral ZI as a novel target for deep brain stimulation to treat refractory obsessive-compulsive disorder and other disorders associated with dysfunctional reward circuitry.

3.
J Vis ; 13(5)2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23576114

RESUMO

Looking for a target in a visual scene becomes more difficult as the number of stimuli increases. In a signal detection theory view, this is due to the cumulative effect of noise in the encoding of the distractors, and potentially on top of that, to an increase of the noise (i.e., a decrease of precision) per stimulus with set size, reflecting divided attention. It has long been argued that human visual search behavior can be accounted for by the first factor alone. While such an account seems to be adequate for search tasks in which all distractors have the same, known feature value (i.e., are maximally predictable), we recently found a clear effect of set size on encoding precision when distractors are drawn from a uniform distribution (i.e., when they are maximally unpredictable). Here we interpolate between these two extreme cases to examine which of both conclusions holds more generally as distractor statistics are varied. In one experiment, we vary the level of distractor heterogeneity; in another we dissociate distractor homogeneity from predictability. In all conditions in both experiments, we found a strong decrease of precision with increasing set size, suggesting that precision being independent of set size is the exception rather than the rule.


Assuntos
Atenção/fisiologia , Percepção de Forma/fisiologia , Detecção de Sinal Psicológico/fisiologia , Percepção de Tamanho/fisiologia , Análise de Variância , Discriminação Psicológica/fisiologia , Feminino , Humanos , Masculino , Modelos Teóricos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
4.
Vision Res ; 131: 96-105, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28087445

RESUMO

The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.


Assuntos
Adaptação Ocular/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Animais , Adaptação à Escuridão/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos
5.
Front Neural Circuits ; 10: 106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066192

RESUMO

Retinal ganglion cells (RGCs) are often grouped based on their functional properties. Many of these functional properties, such as receptive field (RF) size, are driven by specific retinal circuits. In this report, we determined the role of the ON bipolar cell (BC) mediated crossover circuitry in shaping the center and surround of OFF RGCs. We recorded from a large population of mouse RGCs using a multielectrode array (MEA) while pharmacologically removing the ON BC-mediated crossover circuit. OFF sustained and transient responses to whole field stimuli are lost under scotopic conditions, but maintained under photopic conditions. Though photopic light responses were grossly maintained, we found that photopic light response properties were altered. Using linear RF mapping, we found a significant reduction in the antagonistic surround and a decrease in size of the RF center. Using a novel approach to separate the distinct temporal filters present in the RF center, we see that the crossover pathway contributes specifically to the sluggish antagonistic filter in the center. These results provide new insight into the role of crossover pathways in driving RGCs and also demonstrate that the distinct inputs driving the RF center can be isolated and assayed by RGC activity.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Células Amácrinas/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Curr Opin Neurobiol ; 25: 38-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24709599

RESUMO

Fundamental to our perception of a unified and stable environment is the capacity to combine information across the senses. Although this process appears seamless as an adult, the brain's ability to successfully perform multisensory cue combination takes years to develop and relies on a number of complex processes including cue integration, cue calibration, causal inference, and reference frame transformations. Further complexities exist because multisensory cue combination is implemented across time by populations of noisy neurons. In this review, we discuss recent behavioral studies exploring how the brain combines information from different sensory systems, neurophysiological studies relating behavior to neuronal activity, and a theory of neural sensory encoding that can account for many of these experimental findings.


Assuntos
Encéfalo/fisiologia , Sinais (Psicologia) , Modelos Neurológicos , Neurônios/fisiologia , Sensação/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA