Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 44(43)2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39251354

RESUMO

We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and µ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated µ-opioid modulation of these synapses and found that activation of µ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.


Assuntos
Ácido Glutâmico , Hipocampo , Receptores Opioides mu , Animais , Receptores Opioides mu/metabolismo , Camundongos , Masculino , Ácido Glutâmico/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
2.
Neurobiol Dis ; 195: 106492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575093

RESUMO

We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.


Assuntos
Modelos Animais de Doenças , Fenótipo , Animais , Camundongos , Cerebelo/patologia , Cerebelo/metabolismo , Células de Purkinje/patologia , Células de Purkinje/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Genótipo , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Camundongos Mutantes Neurológicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Hum Mol Genet ; 25(6): 1074-87, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755825

RESUMO

Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Neurônios Motores/metabolismo , Tratos Piramidais/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/fisiologia , Axônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Knockout , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Mutação , Tratos Piramidais/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia
4.
Cerebellum ; 15(6): 789-828, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26439486

RESUMO

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Assuntos
Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Animais , Cerebelo/citologia , Cerebelo/fisiopatologia , Consenso , Humanos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia
5.
Cerebellum ; 14(5): 516-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25917213

RESUMO

α-Synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-Synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1), while it was not detected in VGluT2-positive climbing fibers. α-Synuclein was particularly enriched in lobules IX and X, a region known to contain a high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double-labeled cerebellar sections with antibodies to α-synuclein and UBC-type-specific markers (calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs) and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed a dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-Synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , alfa-Sinucleína/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas de Choque Térmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Chaperonas Moleculares , Mutação/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Canais de Cátion TRPC/genética , alfa-Sinucleína/genética
6.
Cerebellum ; 14(3): 292-307, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626522

RESUMO

This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.


Assuntos
Ataxia/patologia , Córtex Cerebelar/citologia , Camundongos Mutantes Neurológicos , Morfogênese , Degeneração Neural/psicologia , Células de Purkinje/patologia , Animais , Ataxia/fisiopatologia , Axônios/patologia , Dendritos/patologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
7.
J Neurosci ; 33(50): 19689-94, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336732

RESUMO

Transient receptor potential "canonical" cation channels (TRPC) are involved in many cellular activities, including neuronal synaptic transmission. These channels couple lipid metabolism, calcium homeostasis, and electrophysiological properties as they are calcium permeable and activated through the phospholipase C pathway and by diacylglycerol. The TRPC3 subunit is abundantly expressed in Purkinje cells (PCs), where it mediates slow metabotropic glutamate receptor-mediated synaptic responses. Recently, it has been shown that heterozygous moonwalker mice, which are a model of cerebellar ataxia, carry a dominant gain-of-function mutation (T635A) in the TRPC3 gene. This mutation leads to PC loss and dysmorphism, which have been suggested to cause the ataxia. However, the ataxic phenotype is present from a very early stage (before weaning), whereas PC loss does not appear until several months of age. Here we show that another class of cerebellar neurons, the type II unipolar brush cells (UBCs), express functional TRPC3 channels; intriguingly, these cells are ablated in moonwalker mice by 1 month of age. Additionally, we show that in moonwalker mice, intrinsic excitability of PCs is altered as early as 3 weeks after birth. We suggest that this altered excitability and the TRPC3-mediated loss of type II UBCs may both contribute to the ataxic phenotype of these mice and that different calcium handling in PCs and type II UBCs may account for the dramatic differences in sensitivity to the moonwalker mutation between these cell types.


Assuntos
Potenciais de Ação/fisiologia , Ataxia Cerebelar/fisiopatologia , Células de Purkinje/fisiologia , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Cerebelo/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Células de Purkinje/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
8.
PLoS Genet ; 7(3): e1002032, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21455486

RESUMO

Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ∼0.10-0.14 µm, making stereocilia ∼30%-60% thinner than wild type and suggesting that they contained ∼50%-85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle.


Assuntos
Células Ciliadas Auditivas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Morfogênese/genética , Animais , Cílios , Cóclea/metabolismo , Cóclea/ultraestrutura , Feminino , Células Ciliadas Auditivas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/ultraestrutura
9.
J Pain ; 25(2): 522-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37793537

RESUMO

Deactivation of the medial prefrontal cortex (mPFC) has been broadly reported in both neuropathic pain models and human chronic pain patients. Several cellular mechanisms may contribute to the inhibition of mPFC activity, including enhanced GABAergic inhibition. The functional effect of GABAA(γ-aminobutyric acid type A)-receptor activation depends on the concentration of intracellular chloride in the postsynaptic neuron, which is mainly regulated by the activity of Na-K-2Cl cotransporter isoform 1 (NKCC1) and K-Cl cotransporter isoform 2 (KCC2), 2 potassium-chloride cotransporters that import and extrude chloride, respectively. Recent work has shown that the NKCC1-KCC2 ratio is affected in numerous pathological conditions, and we hypothesized that it may contribute to the alteration of mPFC function in neuropathic pain. We used quantitative in situ hybridization to assess the level of expression of NKCC1 and KCC2 in the mPFC of a mouse model of neuropathic pain (spared nerve injury), and we found that KCC2 transcript is increased in the mPFC of spared nerve injury mice while NKCC1 is not affected. Perforated patch recordings further showed that this results in the hypernegative reversal potential of the GABAA current in pyramidal neurons of the mPFC. Computational simulations suggested that this change in GABAA reversal potential is sufficient to significantly reduce the overall activity of the cortical network. Thus, our results identify a novel pathological modulation of GABAA function and a new mechanism by which mPFC function is inhibited in neuropathic pain. Our data also help explain previous findings showing that activation of mPFC interneurons has proalgesic effect in neuropathic, but not in control conditions. PERSPECTIVE: Chronic pain is associated with the presence of depolarizing GABAA current in the spinal cord, suggesting that pharmacological NKCC1 antagonism has analgesic effects. However, our results show that in neuropathic pain, GABAA current is actually hyperinhibitory in the mPFC, where it contributes to the mPFC functional deactivation. This suggests caution in the use of NKCC1 antagonism to treat pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Cloretos/metabolismo , Cloretos/farmacologia , Neuralgia/metabolismo , Células Piramidais/metabolismo , Cotransportadores de K e Cl- , Ácido gama-Aminobutírico/metabolismo , Córtex Pré-Frontal , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
10.
Cerebellum ; 11(4): 1012-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22528965

RESUMO

Unipolar brush cells (UBCs) are excitatory cerebellar granular layer interneurons whose brush-like dendrites receive one-to-one mossy fiber inputs. Subclasses of UBCs differ primarily by expressing metabotropic glutamate receptor (mGluR) 1α or calretinin. We used GENSAT Tg(Grp-EGFP) BAC transgenic mice, which selectively express enhanced green fluorescent protein (EGFP) in mGluR1α-positive UBCs to compare the functional properties of the two subclasses. Compared to EGFP-negative UBCs, which include the calretinin-positive cells, EGFP-positive UBCs had smaller somata (area 48 vs 63 µm(2)), lower specific membrane resistance (6.4 vs. 13.7 KΩ cm(2)), were less prone to intrinsic firing, and showed more irregular firing (in cell-attached ~49 % were firing vs. ~88 %, and the CV was 0.53 vs. 0.32 for EGFP-negative cells). Some of these differences are attributable to higher density of background K(+) currents in EGFP-positive cells (at -120 mV, the barium-sensitive current was 94 vs. 37 pA in EGFP-negative cells); Ih, on the contrary, was more abundantly expressed in EGFP-negative cells (at -140 mV, it was -122 vs. -54 pA in EGFP-positive neurons); furthermore, while group II mGluR modulation of the background potassium current in EGFP-negative UBCs was maintained after intracellular dialysis, mGluR modulation in EGFP-positive UBCs was lost in whole-cell recordings. Finally, cell-attached firing was reversibly abolished by the GABA(B) activation in EGFP-positive, but not in EGFP-negative UBCs. Immunohistochemistry showed that EGFP-negative UBCs express GIRK2 at high density, while mGluR1α UBCs are GIRK2 negative, suggesting that GIRK2 mediates the mGluR-sensitive current in EGFP-negative UBCs. These data suggest that the two subclasses perform different functions in the cerebellar microcircuits.


Assuntos
Córtex Cerebelar/citologia , Cerebelo/citologia , Fenômenos Eletrofisiológicos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Calbindina 2 , Córtex Cerebelar/metabolismo , Cerebelo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Histocitoquímica/métodos , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteína G de Ligação ao Cálcio S100/genética , Proteína G de Ligação ao Cálcio S100/metabolismo
12.
Cell Rep ; 33(6): 108358, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176139

RESUMO

Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.


Assuntos
Metabolismo Energético/fisiologia , Leptina/metabolismo , Metabolismo/genética , Respiração/genética , Animais , Humanos , Camundongos
13.
J Cell Biol ; 163(5): 1045-55, 2003 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-14657236

RESUMO

The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at approximately 1.5 s-1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.


Assuntos
Actinas/metabolismo , Proteínas Contráteis , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocalasina D/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Microvilosidades/ultraestrutura , Inibidores da Síntese de Ácido Nucleico/metabolismo , Profilinas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos
14.
J Neurosci ; 27(42): 11179-91, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17942713

RESUMO

Using a rat model of ischemic paraplegia, we examined the expression of spinal AMPA receptors and their role in mediating spasticity and rigidity. Spinal ischemia was induced by transient occlusion of the descending aorta combined with systemic hypotension. Spasticity/rigidity were identified by simultaneous measurements of peripheral muscle resistance (PMR) and electromyography (EMG) before and during ankle flexion. In addition, Hoffman reflex (H-reflex) and motor evoked potentials (MEPs) were recorded from the gastrocnemius muscle. Animals were implanted with intrathecal catheters for drug delivery and injected with the AMPA receptor antagonist NGX424 (tezampanel), glutamate receptor 1 (GluR1) antisense, or vehicle. Where intrathecal vehicle had no effect, intrathecal NGX424 produced a dose-dependent suppression of PMR [ED50 of 0.44 microg (0.33-0.58)], as well as tonic and ankle flexion-evoked EMG activity. Similar suppression of MEP and H-reflex were also seen. Western blot analyses of lumbar spinal cord tissue from spastic animals showed a significant increase in GluR1 but decreased GluR2 and GluR4 proteins. Confocal and electron microscopic analyses of spinal cord sections from spastic animals revealed increased GluR1 immunoreactivity in reactive astrocytes. Selective GluR1 knockdown by intrathecal antisense treatment resulted in a potent reduction of spasticiy and rigidity and concurrent downregulation of neuronal/astrocytic GluR1 in the lumbar spinal cord. Treatment of rat astrocyte cultures with AMPA led to dose-dependent glutamate release, an effect blocked by NGX424. These data suggest that an AMPA/kainate receptor antagonist can represent a novel therapy in modulating spasticity/rigidity of spinal origin and that astrocytes may be a potential target for such treatment.


Assuntos
Astrócitos/metabolismo , Rigidez Muscular/metabolismo , Espasticidade Muscular/metabolismo , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Isquemia do Cordão Espinal/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Masculino , Rigidez Muscular/etiologia , Rigidez Muscular/genética , Espasticidade Muscular/etiologia , Espasticidade Muscular/genética , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Isquemia do Cordão Espinal/complicações , Isquemia do Cordão Espinal/genética
15.
Ann Clin Transl Neurol ; 3(5): 331-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27231703

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity. METHODS: Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function. RESULTS: There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function. Neuromuscular junctions (NMJ) are impaired in muscle groups that are innervated by slow-twitch or fast-twitch SMN. However, unlike corticospinal motor neurons, SMN cell bodies remain intact with no signs of elevated endoplasmic reticulum (ER) stress. INTERPRETATION: Presence of NMJ defects and progressive retrograde axonal degeneration in the absence of major SMN soma loss suggest that defining pathology as a function of neuron number is misleading and that upper and lower motor neurons utilize UCHL1 function in different cellular events. In line with findings in patients with mutations in UCHL1 gene, our results suggest a unique role of UCHL1, especially for motor neuron circuitry. SMN require UCHL1 to maintain NMJ and motor axon health, and that observed motor dysfunction in the absence of UCHL1 is not due to SMN loss, but mostly due to disintegrated circuitry.

16.
J Neurosci ; 24(23): 5445-56, 2004 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-15190118

RESUMO

Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells, and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca(2+)-resistant manner, bound actin monomer via a WASP (Wiskott-Aldrich syndrome protein) homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53, and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5-bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics, and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in various mechanosensory and chemosensory cells.


Assuntos
Células Quimiorreceptoras/química , Mecanorreceptores/química , Proteínas dos Microfilamentos/análise , Transdução de Sinais , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cálcio/metabolismo , Proteínas do Citoesqueleto/análise , Surdez/etiologia , Surdez/metabolismo , Feminino , Imunofluorescência , Células Ciliadas Auditivas/química , Técnicas Imunoenzimáticas , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/química , Polímeros , Prolina/metabolismo , Isoformas de Proteínas/análise , Ratos , Ratos Sprague-Dawley , Transfecção , Fosfolipases Tipo C/metabolismo , Doenças Vestibulares/etiologia , Doenças Vestibulares/metabolismo
17.
J Comp Neurol ; 470(3): 221-39, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-14755513

RESUMO

Bromodeoxyuridine (BrdU) is broadly used in neuroscience to study embryonic development and adult neurogenesis. The potential toxicity of this halogenated pyrimidine analogue is frequently neglected. In this study, we administered BrdU in small doses by the progressively delayed cumulative labeling method to immunocytochemically tag different cerebellar cell types with antibodies to specific markers and BrdU in the same section. The well-known structure of the cerebellum made it possible to ascertain several toxic effects of the treatment. Time-pregnant rats were given five or six injections of 5 or 6 mg of BrdU ( approximately 12-20 mg/kg) at 8-hour intervals over 2 successive days between day 11 and 21 of pregnancy (E11-E12 to E20-E21), and the adult progeny was processed by immunocytochemistry. We demonstrate that this treatment effectively labeled distinct cerebellar cell populations but produced striking defects in the proliferation, migration, and settling of the Purkinje cells; reduced the size of the cerebellar cortex and nuclei; produced defects in the patterning of foliation; and also affected litter size, body weight, and mortality of the offspring. The observed toxic effects were consistent within individual treatment groups but varied between different treatment groups. Treatment with BrdU at the peak of neurogenesis of cerebellar projection neurons (E14) produced the most severe malformations. We observed no overt effects on the timing of neurogenesis for cerebellar neurons and glia across experimental groups. In conclusion, BrdU is a useful tool to study neural development, but its cytotoxicity represents a serious pitfall particularly when multiple doses are used to label cells.


Assuntos
Bromodesoxiuridina/toxicidade , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Animais , Cerebelo/embriologia , Feminino , Vias Neurais/efeitos dos fármacos , Vias Neurais/embriologia , Vias Neurais/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
18.
Brain Struct Funct ; 219(2): 719-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23503970

RESUMO

Sublineage diversification of specific neural cell classes occurs in complex as well as simply organized regions of the central and peripheral nervous systems; the significance of the phenomenon, however, remains insufficiently understood. The unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons that occur at high density in vestibulocerebellum. As they are classified into subsets that differ in chemical phenotypes, intrinsic properties, and lobular distribution, they represent a valuable neuronal model to study subclass diversification. In this study, we show that cerebellar UBCs of adult rats and mice form two subclasses-type I and type II UBCs-defined by somatodendritic expression of calretinin (CR), mGluR1α, phospholipases PLCß1 and PLCß4, and diacylglycerol kinase-beta (DGKß). We demonstrate that PLCß1 is associated only with the CR(+) type I UBCs, while PLCß4 and DGKß are exclusively present in mGluR1α(+) type II UBCs. Notably, all PLCß4(+) UBCs, representing about 2/3 of entire UBC population, also express mGluR1α. Furthermore, our data show that the sum of CR(+) type I UBCs and mGluR1α(+) type II UBCs accounts for the entire UBC class identified with Tbr2 immunolabeling. The two UBC subtypes also show a very different albeit somehow overlapping topographical distribution as illustrated by detailed cerebellar maps in this study. Our data not only complement and extend the previous knowledge on the diversity and subclass specificity of the chemical phenotypes within the UBC population, but also provide a new angle to the understanding of the signaling networks in type I and type II UBCs.


Assuntos
Cerebelo/citologia , Diacilglicerol Quinase/metabolismo , Neurônios/metabolismo , Fosfolipase C beta/metabolismo , Animais , Calbindina 2/metabolismo , Cerebelo/metabolismo , Diacilglicerol Quinase/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Especificidade da Espécie , Proteínas com Domínio T/metabolismo
19.
Brain Res Rev ; 66(1-2): 220-45, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20937306

RESUMO

Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.


Assuntos
Córtex Cerebelar/citologia , Rede Nervosa/citologia , Vias Neurais/citologia , Neurônios/citologia , Sinapses/ultraestrutura , Animais , Córtex Cerebelar/fisiologia , Humanos , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
20.
J Comp Neurol ; 509(6): 661-76, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18551532

RESUMO

The espins are Ca(2+)-resistant actin-bundling proteins that are enriched in hair cell stereocilia and sensory cell microvilli. Here, we report a novel localization of espins to a large proportion of rat type I spiral ganglion neurons (SGNs) and their projections to the cochlear nucleus (CN). Moreover, we show that a fraction of these espins is in the nucleus of SGNs owing to the presence of splice-isoforms that contain a functional nuclear localization signal (NLS). Espin antibody labeled approximately 83% of type I SGNs, and the labeling intensity increased dramatically during early postnatal development. Type II SGNs and vestibular ganglion neurons were unlabeled. In the CN, espin-positive auditory nerve fibers showed a projection pattern typical of type I SGNs, with intense labeling in the nerve root region and posteroventral CN (PVCN). The anteroventral CN (AVCN) showed moderate labeling, whereas the dorsal CN showed weak labeling that was restricted to the deep layer. Espin-positive synaptic terminals were enriched around nerve root neurons and octopus cells in the PVCN and were also found on globular bushy cells and multipolar neurons in the PVCN and AVCN. SGNs expressed multiple espin transcripts and proteins, including splice-isoforms that contain a nonapeptide, which is rich in positively charged amino acids and creates a bipartite NLS. The nonapeptide was necessary to target espin isoforms to the nucleus and was sufficient to target an unrelated protein to the nucleus when joined with the upstream di-arginine-containing octapeptide. The presence of cytoplasmic and nuclear espins in SGNs suggests additional roles for espins in auditory neuroscience.


Assuntos
Actinas/metabolismo , Núcleo Coclear/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Actinas/genética , Animais , Proteínas do Citoesqueleto/genética , Imuno-Histoquímica , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA