Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res ; 77(5): 1127-1141, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096174

RESUMO

IgE antibodies are key mediators of antiparasitic immune responses, but their potential for cancer treatment via antibody-dependent cell-mediated cytotoxicity (ADCC) has been little studied. Recently, tumor antigen-specific IgEs were reported to restrict cancer cell growth by engaging high-affinity Fc receptors on monocytes and macrophages; however, the underlying therapeutic mechanisms were undefined and in vivo proof of concept was limited. Here, an immunocompetent rat model was designed to recapitulate the human IgE-Fcε receptor system for cancer studies. We also generated rat IgE and IgG mAbs specific for the folate receptor (FRα), which is expressed widely on human ovarian tumors, along with a syngeneic rat tumor model expressing human FRα. Compared with IgG, anti-FRα IgE reduced lung metastases. This effect was associated with increased intratumoral infiltration by TNFα+ and CD80+ macrophages plus elevated TNFα and the macrophage chemoattractant MCP-1 in lung bronchoalveolar lavage fluid. Increased levels of TNFα and MCP-1 correlated with IgE-mediated tumor cytotoxicity by human monocytes and with longer patient survival in clinical specimens of ovarian cancer. Monocytes responded to IgE but not IgG exposure by upregulating TNFα, which in turn induced MCP-1 production by monocytes and tumor cells to promote a monocyte chemotactic response. Conversely, blocking TNFα receptor signaling abrogated induction of MCP-1, implicating it in the antitumor effects of IgE. Overall, these findings show how antitumor IgE reprograms monocytes and macrophages in the tumor microenvironment, encouraging the clinical use of IgE antibody technology to attack cancer beyond the present exclusive reliance on IgG. Cancer Res; 77(5); 1127-41. ©2017 AACR.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Receptor 1 de Folato/imunologia , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Receptor 1 de Folato/antagonistas & inibidores , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA