Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30397055

RESUMO

Lipopeptide daptomycin is a last-line cell-membrane-targeting antibiotic to treat multidrug-resistant Staphylococcus aureus Alarmingly, daptomycin-resistant S. aureus isolates have emerged. The mechanisms underlying daptomycin resistance are diverse and share similarities with resistances to cationic antimicrobial peptides and other lipopeptides, but they remain to be fully elucidated. We selected mutants with increased resistance to daptomycin from a library of transposon insertions in sequent type 8 (ST8) S. aureus HG003. Insertions conferring increased daptomycin resistance were localized to two genes, one coding for a hypothetical lipoprotein (SAOUHSC_00362, Dsp1), and the other for an alkaline shock protein (SAOUHSC_02441, Asp23). Markerless loss-of-function mutants were then generated for comparison. All transposon mutants and knockout strains exhibited increased daptomycin resistance compared to those of wild-type and complemented strains. Null and transposon insertion mutants also exhibited increased resistance to cationic antimicrobial peptides. Interestingly, the Δdsp1 mutant also showed increased resistance to vancomycin, a cell-wall-targeting drug with a different mode of action. Null mutations in both dsp1 and asp23 resulted in increased tolerance as reflected by reduced killing to both daptomycin and vancomycin, as well as an increased tolerance to surfactant (Triton X-100). Neither mutant exhibited increased resistance to lysostaphin, a cell-wall-targeting endopeptidase. These findings identified two genes core to the S. aureus species that make previously uncharacterized contributions to antimicrobial resistance and tolerance in S. aureus.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Membrana Celular/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia
2.
PLoS Pathog ; 10(4): e1004047, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722202

RESUMO

During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunidade Celular , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Camundongos , Toxoplasmose/genética , Toxoplasmose/patologia
3.
PLoS Pathog ; 9(4): e1003320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633952

RESUMO

IFN-γ activates cells to restrict intracellular pathogens by upregulating cellular effectors including the p65 family of guanylate-binding proteins (GBPs). Here we test the role of Gbp1 in the IFN-γ-dependent control of T. gondii in the mouse model. Virulent strains of T. gondii avoided recruitment of Gbp1 to the parasitophorous vacuole in a strain-dependent manner that was mediated by the parasite virulence factors ROP18, an active serine/threonine kinase, and the pseudokinase ROP5. Increased recruitment of Gbp1 to Δrop18 or Δrop5 parasites was associated with clearance in IFN-γ-activated macrophages in vitro, a process dependent on the autophagy protein Atg5. The increased susceptibility of Δrop18 mutants in IFN-γ-activated macrophages was reverted in Gbp1(-/-) cells, and decreased virulence of this mutant was compensated in Gbp1(-/-) mice, which were also more susceptible to challenge with type II strain parasites of intermediate virulence. These findings demonstrate that Gbp1 plays an important role in the IFN-γ-dependent, cell-autonomous control of toxoplasmosis and predict a broader role for this protein in host defense.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Interferon gama/metabolismo , Macrófagos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Proteína 5 Relacionada à Autofagia , Células da Medula Óssea/citologia , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Imunidade Celular , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
4.
Infect Immun ; 78(9): 3660-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547745

RESUMO

Chlamydia trachomatis is a human pathogen of global importance. An obstacle to studying the pathophysiology of human chlamydial disease is the lack of a suitable murine model of C. trachomatis infection. Mice are less susceptible to infection with human isolates due in part to innate mouse-specific host defense mechanisms to which human strains are sensitive. Another possible factor that influences the susceptibility of mice to infection is that human isolates are commonly cultivated in vitro prior to infection of mice; therefore, virulence genes could be lost as a consequence of negative selective pressure. We tested this hypothesis by infecting innate immunity-deficient C3H/HeJ female mice intravaginally with a human serovar D urogenital isolate that had undergone multiple in vitro passages. We observed early and late infection clearance phenotypes. Strains of each phenotype were isolated and then used to reinfect naïve mice. Following infection, the late-clearance strain was significantly more virulent. It caused unvarying infections of much longer durations with greater infectious burdens that naturally ascended to the upper genital tract, causing salpingitis. Despite contrasting in vivo virulence characteristics, the strains exhibited no differences in the results of in vitro infectivity assays or sensitivities to gamma interferon. Genome sequencing of the strains revealed mutations that localized to a single gene (CT135), implicating it as a critical virulence factor. Mutations in CT135 were not unique to serovar D but were also found in multiple oculogenital reference strains. Our findings provide new information about the pathogenomics of chlamydial infection and insights for improving murine models of infection using human strains.


Assuntos
Infecções por Chlamydia/etiologia , Chlamydia trachomatis/patogenicidade , Mutação da Fase de Leitura , Doenças dos Genitais Femininos/etiologia , Fatores de Virulência/genética , Animais , Sequência de Bases , Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Feminino , Doenças dos Genitais Femininos/patologia , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético
5.
mBio ; 7(4)2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27531913

RESUMO

Infections caused by multiple organisms, or polymicrobial infections, are likely more common than is broadly appreciated. Interaction among microbial communities (and with their host) can change the infection landscape by subverting immunity, providing nutrients and inhibiting competing microbes. Stacy et al. (A. Stacy, D. Fleming, R. J. Lamont, K. P. Rumbaugh, and M. Whiteley, mBio 7:e00782-16, 2016, http://dx.doi.org/10.1128/mBio.00782-16) described a novel mechanism that results in synergistic growth of oral microbes Aggregatibacter actinomycetemcomitans and Streptococcus gordonii The authors used whole-genome fitness profiling by transposon sequencing (Tn-seq) to identify genes differentially required for growth in vitro versus in a mono- or coinfection in a thigh abscess model. They found that coinfection with S. gordonii allowed A. actinomycetemcomitans to shift from an anaerobic to an aerobic mode of growth. This shift involved the production of a terminal electron acceptor H2O2 by S. gordonii and increased A. actinomycetemcomitans persistence-an interaction termed "cross-respiration."


Assuntos
Coinfecção , Oxigênio , Peróxido de Hidrogênio , Streptococcus gordonii/genética , Virulência
6.
mBio ; 6(5): e01157-15, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26350966

RESUMO

UNLABELLED: A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth. IMPORTANCE: Autophagy is a process of cellular remodeling that allows the cell to recycle senescent organelles and recapture nutrients. During innate immune responses in the mouse, autophagy is recruited to help target intracellular pathogens and thus eliminate them. However, the antimicrobial mediators that depend on autophagy in the mouse are not conserved in humans, raising the issue of how human cells control intracellular pathogens. Our study defines a new pathway for the control of the ubiquitous intracellular parasite T. gondii in human cells activated by IFN-γ. Recruitment of autophagy adaptors resulted in engulfment of the parasite in multiple membranes and growth impairment. Although susceptible type 2 and 3 stains of T. gondii were captured by this autophagy-dependent pathway, type 1 strains were able to avoid entrapment.


Assuntos
Autofagia , Células Epiteliais/imunologia , Células Epiteliais/parasitologia , Interferon gama/metabolismo , Toxoplasma/imunologia , Células HeLa , Humanos , Ubiquitinação , Vacúolos/parasitologia
7.
Science ; 337(6098): 1107-11, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22936781

RESUMO

Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (ß-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Metagenoma/efeitos dos fármacos , Metagenoma/genética , Microbiologia do Solo , Aminoglicosídeos/farmacologia , Bactérias/patogenicidade , Sequência de Bases , Ensaios de Triagem em Larga Escala , Humanos , Metagenômica , Dados de Sequência Molecular , Sulfonamidas/farmacologia , Tetraciclinas/farmacologia , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA