Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Insect Biochem Physiol ; 110(4): e21893, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35388481

RESUMO

Glyphosate-based herbicide Roundup, as the most employed herbicide used for multiple purposes in agriculture, adversely affects nontarget organisms. We tested the effects of Roundup applied at larval and adult stages. Roundup caused developmental delay and increased larvae mortality. Roundup treatment reduced hemolymph glucose and glycogen levels in adult flies of both sexes at the highest concentration tested. Sex-dependent diverse effects were found in catalase and Cu,Zn superoxide dismutase (Cu,Zn-SOD) activities. Decreased aconitase activity, contents of thiols, and lipid peroxides were found after larval Roundup exposure. Furthermore, chronic exposure to adult flies decreased appetite, body weight, and shortened lifespan. Thus, our results suggest that high concentrations of Roundup are deleterious to both larvae and adults, resulting in a shift of the metabolism and antioxidant defense system in Drosophila melanogaster.


Assuntos
Herbicidas , Animais , Antioxidantes/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Herbicidas/metabolismo , Herbicidas/toxicidade , Larva/metabolismo , Masculino , Estresse Oxidativo
2.
Biogerontology ; 21(2): 155-171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749111

RESUMO

Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17-71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.


Assuntos
Ciona intestinalis/enzimologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Resistência a Medicamentos , Metabolismo Energético , Longevidade , NADH Desidrogenase/metabolismo , Xenobióticos/farmacologia , Animais , Animais Geneticamente Modificados , Ciona intestinalis/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Masculino , NADH Desidrogenase/genética , Fatores Sexuais
3.
Biogerontology ; 21(2): 173-174, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989363

RESUMO

The article Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila, written by Dmytro V. Gospodaryov. Olha M. Strilbytska. Uliana V. Semaniuk. Natalia V. Perkhulyn. Bohdana M. Rovenko. Ihor S. Yurkevych. Ana G. Barata. Tobias P. Dick. Oleh V. Lushchak and Howard T. Jacobs, was originally published electronically on the publisher's internet portal on 20 November 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 27 January 2020 to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The original article has been corrected.

4.
Food Funct ; 13(15): 8313-8328, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842943

RESUMO

Chili powder is a widely used spice with pungent taste, often consumed on a daily basis in several countries. Recent prospective cohort studies showed that the regular use of chili pepper improves healthspan in humans. Indeed, chili pepper fruits contain phenolic substances which are structurally similar to those that show anti-aging properties. The objective of our study was to test whether consumption of chili-supplemented food by the fruit fly, Drosophila melanogaster, would prolong lifespan and in which way this chili-supplemented food affects animal metabolism. Chili powder added to food in concentrations of 0.04%-0.12% significantly extended median lifespan in fruit fly cohorts of both genders by 9% to 13%. However, food supplemented with 3% chili powder shortened lifespan of male cohorts by 9%. Lifespan extension was accompanied by a decrease in age-independent mortality (i.e., death in early ages). The metabolic changes caused by consumption of chili-supplemented food had a pronounced dependence on gender. A characteristic of both fruit fly sexes that ate chili-supplemented food was an increased resistance to cold shock. Flies of both sexes had lower levels of hemolymph glucose when they ate food supplemented with low concentrations of chili powder, as compared with controls. However, males fed on food with 3% chili had lower levels of storage lipids and pyruvate reducing activity of lactate dehydrogenase compared with controls. Females fed on this food showed lower activities of hexokinase and pyruvate kinase, as well as lower ADP/O ratios, compared with control flies.


Assuntos
Capsicum , Drosophila melanogaster , Alérgenos , Animais , Capsicum/química , Feminino , Humanos , Longevidade , Masculino , Redes e Vias Metabólicas , Pós , Especiarias
5.
Redox Rep ; 27(1): 221-229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200601

RESUMO

OBJECTIVES: Many plant-derived anti-aging preparations influence antioxidant defense system. Consumption of food supplemented with chili pepper powder was found to extend lifespan in the fruit fly, Drosophila melanogaster. The present study aimed to test a connection between life-extending effect of chili powder and antioxidant defense system of D. melanogaster. METHODS: Flies were reared for 15 days in the mortality cages on food with 0% (control), 0.04%, 0.12%, 0.4%, or 3% chili powder. Antioxidant and related enzymes, as well as oxidative stress indices were measured. RESULTS: Female flies that consumed chili-supplemented food had a 40-60% lower glutathione-S-transferase (GST) activity as compared with the control cohort. Activity of superoxide dismutase (SOD) was about 37% higher in males that consumed food with 3% chili powder in comparison with the control cohort. Many of the parameters studied were sex-dependent. CONCLUSIONS: Consumption of chili-supplemented food extends lifespan in fruit fly cohorts in a concentration- and gender-dependent manner. However, this extension is not mediated by a strengthening of antioxidant defenses. Consumption of chili-supplemented food does not change the specific relationship between antioxidant and related enzymes in D. melanogaster, and does not change the linkage of the activities of these enzymes to fly gender.


Assuntos
Antioxidantes , Drosophila melanogaster , Animais , Antioxidantes/metabolismo , Feminino , Alimentos Fortificados , Glutationa , Masculino , Estresse Oxidativo , Pós/farmacologia , Superóxido Dismutase/metabolismo , Transferases/farmacologia
6.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225024

RESUMO

The insulin-IGF-1 signaling (IIS) pathway is conserved throughout multicellular organisms and regulates many traits, including aging, reproduction, feeding, metabolism, stress resistance, and growth. Here, we present evidence of a survival-sustaining role for IIS in a subset of gut cells in Drosophila melanogaster, namely the intestinal stem cells (ISCs) and progenitor cells. Using RNAi to knockdown the insulin receptor, we found that inhibition of IIS in ISCs statistically shortened the lifespan of experimental flies compared with non-knockdown controls, and also shortened their survival under starvation or malnutrition conditions. These flies also showed decreased reproduction and feeding, and had lower amounts of glycogen and glucose in the body. In addition, increased expression was observed for the Drosophila transcripts for the insulin-like peptides dilp2, dilp5, and dilp6. This may reflect increased insulin signaling in peripheral tissues supported by up-regulation of the target of the brain insulin gene (tobi). In contrast, activation of IIS (via knockdown of the insulin pathway inhibitor PTEN) in intestinal stem and progenitor cells decreased fly resistance to malnutrition, potentially by affecting adipokinetic hormone signaling. Finally, Pten knockdown to enhance IIS also activated JAK-STAT signaling in gut tissue by up-regulation of upd2, upd3, and soc36 genes, as well as genes encoding the EGF receptor ligands spitz and vein. These results clearly demonstrate that manipulating insulin levels may be used to modulate various fly traits, which are important determinants of organismal survival.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Insulina/metabolismo , Intestinos/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/genética , Especificidade de Órgãos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Análise de Sobrevida
7.
Front Physiol ; 9: 1083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197596

RESUMO

Fruit flies have eight identified Drosophila insulin-like peptides (DILPs) that are involved in the regulation of carbohydrate concentrations in hemolymph as well as in accumulation of storage metabolites. In the present study, we investigated diet-dependent roles of DILPs encoded by the genes dilp1-5, and dilp7 in the regulation of insect appetite, food choice, accumulation of triglycerides, glycogen, glucose, and trehalose in fruit fly bodies and carbohydrates in hemolymph. We have found that the wild type and the mutant lines demonstrate compensatory feeding for carbohydrates. However, mutants on dilp2,3, dilp3, dilp5, and dilp7 showed higher consumption of proteins on high yeast diets. To evaluate metabolic differences between studied lines on different diets we applied response surface methodology. High nutrient diets led to a moderate increase in concentration of glucose in hemolymph of the wild type flies. Mutations on dilp genes changed this pattern. We have revealed that the dilp2 mutation led to a drop in glycogen levels independently on diet, lack of dilp3 led to dramatic increase in circulating trehalose and glycogen levels, especially at low protein consumption. Lack of dilp5 led to decreased levels of glycogen and triglycerides on all diets, whereas knockout on dilp7 caused increase in glycogen levels and simultaneous decrease in triglyceride levels at low protein consumption. Fruit fly appetite was influenced by dilp3 and dilp7 genes. Our data contribute to the understanding of Drosophila as a model for further studies of metabolic diseases and may serve as a guide for uncovering the evolution of metabolic regulatory pathways.

8.
Artigo em Inglês | MEDLINE | ID: mdl-27693629

RESUMO

The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ingestão de Alimentos , Feminino , Fertilidade , Regulação da Expressão Gênica , Intestinos/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA