RESUMO
A method is described for the direct detection of unstable cysteine peptidase activity in polyacrylamide gels after native electrophoresis using new selective fluorogenic peptide substrates, pyroglutamyl-phenylalanyl-alanyl-4-amino-7-methylcoumaride (Glp-Phe-Ala-AMC) and pyroglutamyl-phenylalanyl-alanyl-4-amino-7-trifluoromethyl-coumaride (Glp-Phe-Ala-AFC). The detection limit of the model enzyme papain was 17â¯pmol (0.29⯵g) for Glp-Phe-Ala-AMC and 43â¯pmol (0.74⯵g) for Glp-Phe-Ala-AFC, with increased sensitivity and selectivity compared to the traditional method of protein determination with Coomassie G-250 staining or detection of activity using chromogenic substrates. Using this method, we easily identified the target digestive peptidases of Tenebrio molitor larvae by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. The method offers simplicity, high sensitivity, and selectivity compared to traditional methods for improved identification of unstable cysteine peptidases in multi-component biological samples.
Assuntos
Cisteína Proteases/análise , Corantes Fluorescentes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Cisteína Proteases/metabolismo , Corantes Fluorescentes/metabolismo , Larva/enzimologia , Alinhamento de Sequência , Especificidade por Substrato , Tenebrio/enzimologia , Tenebrio/crescimento & desenvolvimentoRESUMO
Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5Î untranslated regions (5Î-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5Î-UTR sequences and introduced random and designed mutations into natural and artificially selected 5Î-UTRs. Several distinct properties could be ascribed to a group of 5Î-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5Î-UTRs.
Assuntos
Regiões 5' não Traduzidas , Escherichia coli/genética , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Ribonucleico , Separação Celular , Citometria de Fluxo , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/fisiologiaRESUMO
BACKGROUND: Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. RESULTS: We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. CONCLUSIONS: Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.
Assuntos
Doença de Crohn/microbiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Genômica , Adulto , Antibacterianos/farmacologia , Bacteriocinas/biossíntese , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Adulto JovemRESUMO
The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3'-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription.
Assuntos
Regulação Bacteriana da Expressão Gênica , Mycoplasma gallisepticum/genética , Transcrição Gênica , Proteínas de Bactérias/química , Perfilação da Expressão Gênica , Genoma Bacteriano , Temperatura Alta , Mycoplasma gallisepticum/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/biossíntese , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/genética , Sítio de Iniciação de Transcrição , Transformação BacterianaRESUMO
BACKGROUND: Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. RESULTS: We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. CONCLUSION: We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.
Assuntos
Bryopsida/citologia , Bryopsida/metabolismo , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/metabolismo , Peptídeos/metabolismo , Células Vegetais/metabolismo , Protoplastos/citologia , Bryopsida/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Protoplastos/metabolismo , Alinhamento de SequênciaRESUMO
BACKGROUND: Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. RESULTS: The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. CONCLUSIONS: In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies.
Assuntos
Perfilação da Expressão Gênica , Fígado/metabolismo , Análise por Conglomerados , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , TranscriptomaRESUMO
This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.
Assuntos
Cisteína Proteases/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Peptídeos/metabolismo , Tenebrio/enzimologia , Animais , Cisteína Proteases/isolamento & purificação , Corantes Fluorescentes/análise , Hidrólise , Modelos Moleculares , Peptídeos/química , Especificidade por Substrato , Tenebrio/metabolismoRESUMO
The epigenetics of bacteria, and bacteria with a reduced genome in particular, is of great interest, but is still poorly understood. Mycoplasma gallisepticum, a representative of the class Mollicutes, is an excellent model of a minimal cell because of its reduced genome size, lack of a cell wall, and primitive cell organization. In this study we investigated DNA modifications of the model object Mycoplasma gallisepticum and their roles. We identified DNA modifications and methylation motifs in M. gallisepticum S6 at the genome level using single molecule real time (SMRT) sequencing. Only the ANCNNNNCCT methylation motif was found in the M. gallisepticum S6 genome. The studied bacteria have one functional system for DNA modifications, the Type I restriction-modification (RM) system, MgaS6I. We characterized its activity, affinity, protection and epigenetic functions. We demonstrated the protective effects of this RM system. A common epigenetic signal for bacteria is the m6A modification we found, which can cause changes in DNA-protein interactions and affect the cell phenotype. Native methylation sites are underrepresented in promoter regions and located only near the -35 box of the promoter, which does not have a significant effect on gene expression in mycoplasmas. To study the epigenetics effect of m6A for genome-reduced bacteria, we constructed a series of M. gallisepticum strains expressing EGFP under promoters with the methylation motifs in their different elements. We demonstrated that m6A modifications of the promoter located only in the -10-box affected gene expression and downregulated the expression of the corresponding gene.
Assuntos
Mycoplasma gallisepticum , Tenericutes , Mycoplasma gallisepticum/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Tenericutes/genética , Metilação de DNARESUMO
Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.
Assuntos
Mycoplasma hominis , Proteoma , Arginina/metabolismo , Lipoproteínas/metabolismo , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Proteoma/metabolismo , ProteômicaRESUMO
Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.
Assuntos
Mycoplasma hominis , Proteoma , Timidina/metabolismo , Arginina , Humanos , Infecções por Mycoplasma , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Fenótipo , Fosfatos , RibonucleosídeosRESUMO
The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.
RESUMO
Mycoplasma hominis is an opportunistic bacterium that can cause acute and chronic infections of the urogenital tract. This bacterium, like all other Mycoplasma species, is characterized by the reduced genome size, and, consequently, reduction of the main metabolic pathways. M. hominis cells cannot effectively use glucose as a carbon and energy source. Therefore, the main pathway of energy metabolism is the arginine dihydrolase pathway. However, several bacteria can use nucleosides as the sole energy source. Biochemical studies using Salmonella typhimurium have shown that three enzymes (thymidine phosphorylase, phosphopentose mutase and deoxyribose-phosphate aldolase) are involved in the thymidine catabolic pathway. All these enzymes are present in M. hominis. For understanding changes in the energy metabolism of M. hominis we performed shotgun proteome analysis of M. hominis cells in liquid medium with arginine or thymidine as a carbon source. LC-MS analysis was performed with an Ultimate 3000 Nano LC System (Thermo Fisher Scientific) coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). Data are available via ProteomeXchange with identifier PXD018714 (https://www.ebi.ac.uk/pride/archive/projects/PXD018714).
RESUMO
As permanent residents of the normal gut microbiota, bifidobacteria have evolved to adapt to the host's immune response whose priority is to eliminate pathogenic agents. The mechanisms that ensure the survival of commensals during inflammation and maintain the stability of the core component of the normal gut microbiota in such conditions remain poorly understood. We propose a new in vitro approach to study the mechanisms of resistance to immune response factors based on high-throughput sequencing followed by transcriptome analysis. This approach allowed us to detect differentially expressed genes associated with inflammation. In this study, we demonstrated that the presence of the pro-inflammatory cytokines IL-6 and TNFα to the growth medium of the B. longum subsp. longum GT15 strain changes the latter's growth rate insignificantly while affecting the expression of certain genes. We identified these genes and performed a COG and a KEGG pathway enrichment analysis. Using phylogenetic profiling we predicted the operons of genes whose expression was triggered by the cytokines TNFα and IL-6 in vitro. By mapping the transcription start points, we experimentally validated the predicted operons. Thus, in this study, we predicted the genes involved in a putative signaling pathway underlying the mechanisms of resistance to inflammatory factors in bifidobacteria. Since bifidobacteria are a major component of the human intestinal microbiota exhibiting pronounced anti-inflammatory properties, this study is of great practical and scientific relevance.
Assuntos
Bifidobacterium longum , Regulação Bacteriana da Expressão Gênica , Interleucina-6/imunologia , Fator de Necrose Tumoral alfa/imunologia , Bifidobacterium longum/genética , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/imunologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Redes Reguladoras de Genes , Genoma Bacteriano , Inflamação/imunologiaRESUMO
Translation efficiency contributes several orders of magnitude difference in the overall yield of exogenous gene expression in bacteria. In diverse bacteria, the translation initiation site, whose sequence is the primary determinant of the translation performance, is comprised of the start codon and the Shine-Dalgarno box located upstream. Here, we have examined how the sequence of a spacer between these main components of the translation initiation site contributes to the yield of synthesized protein. We have created a library of reporter constructs with the randomized spacer region, performed fluorescently activated cell sorting and applied next-generation sequencing analysis (the FlowSeq protocol). As a result, we have identified sequence motifs for the spacer region between the Shine-Dalgarno box and AUG start codon that may modulate the translation efficiency in a 100-fold range.
Assuntos
Escherichia coli , Biossíntese de Proteínas , Sequência de Bases , Códon de Iniciação , Escherichia coli/genética , Escherichia coli/metabolismo , RNA MensageiroRESUMO
Mycoplasma gallisepticum (MG) is one of the smallest free-living and self-replicating organisms, it is characterized by lack of cell wall and reduced genome size. As a result of genome reduction, MG has a limited variety of DNA-binding proteins and transcription factors. To investigate the dynamic changes of the proteomic profile of MG nucleoid, that may assist in revealing its mechanisms of functioning, regulation of chromosome organization and stress adaptation, a quantitative proteomic study was performed on MG nucleoids obtained from the cell culture in logarithmic and stationary phases of synchronous growth. MG cells were grown on a liquid medium with a 9â¯h starvation period. Nucleoids were obtained from the cell culture at the 26th and the 50th hour (logarithmic and stationary growth phases respectively) by sucrose density gradient centrifugation. LC-MS analysis was carried out on an Ultimate 3000 RSLCnano HPLC system connected to a Fusion Lumos mass spectrometer, controlled by XCalibur software (Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). For comprehensive peptide library generation one sample from each biological replicate was run in DDA mode. Then, all the samples were run in a single LC-MS DIA run. Identification of DDA files and DIA quantitation was performed with MaxQuant and Skyline software, correspondingly. All raw data generated from IDA and DDA acquisitions are presented in the PRIDE database with identifier PXD019077.
RESUMO
Cyanobacteria synthesize neurotoxic ß-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12â»15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.
Assuntos
Diamino Aminoácidos/farmacologia , Anabaena/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Anabaena/genética , Toxinas de CianobactériasRESUMO
Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid ß-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.
Assuntos
Diamino Aminoácidos/toxicidade , Anabaena/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nostoc/efeitos dos fármacos , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Toxinas de Cianobactérias , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Nostoc/genética , Nostoc/fisiologiaRESUMO
Mycoplasma gallisepticum belongs to class Mollicutes and causes chronic respiratory disease in birds. It has a reduced genome, lack of cell wall and many metabolic pathways, and also easy to culture and non-pathogenic to humans. Aforementioned made it is a convenient model for studying of systems biology of minimal cell. Studying the transcriptomic level of M. gallisepticum is interesting for both understanding of common principles of transcription regulation of minimal cell and response to definite influence for pathogen bacteria. For rapid investigation of gene expression we developed microarray design including 3366 probes for 678 genes. They included 665 protein coding sequences and 13 antisense RNAs from 816 genes and 17 ncRNAs present in Mycoplasma gallisepticum. The study was performed on Agilent one-color microarray with custom design and random-T7 polymerase primer for cDNA synthesis. Here we present the data for transcription profiling of M. gallisepticum under different types of exposures: genetic knock-out mutants, cell culture exposed to sublethal concentrations of antibiotics and well-characterized heat stress effect. Mutants have transposon insertion to hypothetical membrane protein, lactate dehydrogenase, helicase with unknown function, 1-deoxy-d-xylulose 5-phosphate reductoisomerase or potential sigma factor. For inhibition of important cell systems, treatment with carbonyl cyanide m-chlorophenylhydrazone (CCCP), novobiocin or tetracycline were chosen. Data are available via NCBI Gene Expression Omnibus (GEO) with the accession number GSE85777 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85777).
RESUMO
Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum, and Mycoplasma gallisepticum) to perform promoter mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.
RESUMO
BACKGROUND: Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. RESULTS: Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro, as evidenced by mutant huntingtin protein aggregation, increased number of lysosomes/autophagosomes, nuclear indentations, and enhanced neuronal death during cell aging. Moreover, store-operated channel (SOC) currents were detected in the differentiated neurons, and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally, the quinazoline derivative, EVP4593, reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging. CONCLUSIONS: Our data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug.