Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1099, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232956

RESUMO

Brain function relies on the coordination of activity across multiple, recurrently connected brain areas. For instance, sensory information encoded in early sensory areas is relayed to, and further processed by, higher cortical areas and then fed back. However, the way in which feedforward and feedback signaling interact with one another is incompletely understood. Here we investigate this question by leveraging simultaneous neuronal population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a dimensionality reduction approach, we find that population interactions are feedforward-dominated shortly after stimulus onset and feedback-dominated during spontaneous activity. The population activity patterns most correlated across areas were distinct during feedforward- and feedback-dominated periods. These results suggest that feedforward and feedback signaling rely on separate "channels", which allows feedback signals to not directly affect activity that is fed forward.


Assuntos
Córtex Visual , Retroalimentação , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Vias Visuais/fisiologia
2.
Nat Comput Sci ; 2(8): 512-525, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38177794

RESUMO

Technological advances now allow us to record from large populations of neurons across multiple brain areas. These recordings may illuminate how communication between areas contributes to brain function, yet a substantial barrier remains: how do we disentangle the concurrent, bidirectional flow of signals between populations of neurons? We propose here a dimensionality reduction framework, delayed latents across groups (DLAG), that disentangles signals relayed in each direction, identifies how these signals are represented by each population and characterizes how they evolve within and across trials. We demonstrate that DLAG performs well on synthetic datasets similar in scale to current neurophysiological recordings. Then we study simultaneously recorded populations in primate visual areas V1 and V2, where DLAG reveals signatures of bidirectional yet selective communication. Our framework lays a foundation for dissecting the intricate flow of signals across populations of neurons, and how this signalling contributes to cortical computation.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Neurônios/fisiologia , Encéfalo , Mapeamento Encefálico , Neurofisiologia
3.
Curr Opin Neurobiol ; 65: 59-69, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142111

RESUMO

The brain is composed of many functionally distinct areas. This organization supports distributed processing, and requires the coordination of signals across areas. Our understanding of how populations of neurons in different areas interact with each other is still in its infancy. As the availability of recordings from large populations of neurons across multiple brain areas increases, so does the need for statistical methods that are well suited for dissecting and interrogating these recordings. Here we review multivariate statistical methods that have been, or could be, applied to this class of recordings. By leveraging population responses, these methods can provide a rich description of inter-areal interactions. At the same time, these methods can introduce interpretational challenges. We thus conclude by discussing how to interpret the outputs of these methods to further our understanding of inter-areal interactions.


Assuntos
Encéfalo , Neurônios
4.
Trends Neurosci ; 43(9): 725-737, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771224

RESUMO

Nearly all brain functions involve routing neural activity among a distributed network of areas. Understanding this routing requires more than a description of interareal anatomical connectivity: it requires understanding what controls the flow of signals through interareal circuitry and how this communication might be modulated to allow flexible behavior. Here we review proposals of how communication, particularly between visual cortical areas, is instantiated and modulated, highlighting recent work that offers new perspectives. We suggest transitioning from a focus on assessing changes in the strength of interareal interactions, as often seen in studies of interareal communication, to a broader consideration of how different signaling schemes might contribute to computation. To this end, we discuss a set of features that might be desirable for a communication scheme.


Assuntos
Córtex Visual , Comunicação , Humanos
5.
Neuron ; 102(1): 249-259.e4, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770252

RESUMO

Most brain functions involve interactions among multiple, distinct areas or nuclei. For instance, visual processing in primates requires the appropriate relaying of signals across many distinct cortical areas. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Here we investigate how trial-to-trial fluctuations of population responses in primary visual cortex (V1) are related to simultaneously recorded population responses in area V2. Using dimensionality reduction methods, we find that V1-V2 interactions occur through a communication subspace: V2 fluctuations are related to a small subset of V1 population activity patterns, distinct from the largest fluctuations shared among neurons within V1. In contrast, interactions between subpopulations within V1 are less selective. We propose that the communication subspace may be a general, population-level mechanism by which activity can be selectively routed across brain areas.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Macaca fascicularis , Masculino , Vias Neurais
6.
Front Hum Neurosci ; 8: 913, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426058

RESUMO

Many studies have demonstrated the relationship between the alpha activity and the central visual ability, in which the visual ability is usually assessed through static stimuli. Besides static circumstance, however in the real environment there are often dynamic changes and the peripheral visual ability in a dynamic environment (i.e., dynamic peripheral visual ability) is important for all people. So far, no work has reported whether there is a relationship between the dynamic peripheral visual ability and the alpha activity. Thus, the objective of this study was to investigate their relationship. Sixty-two soccer players performed a newly designed peripheral vision task in which the visual stimuli were dynamic, while their EEG signals were recorded from Cz, O1, and O2 locations. The relationship between the dynamic peripheral visual performance and the alpha activity was examined by the percentage-bend correlation test. The results indicated no significant correlation between the dynamic peripheral visual performance and the alpha amplitudes in the eyes-open and eyes-closed resting condition. However, it was not the case for the alpha activity during the peripheral vision task: the dynamic peripheral visual performance showed significant positive inter-individual correlations with the amplitudes in the alpha band (8-12 Hz) and the individual alpha band (IAB) during the peripheral vision task. A potential application of this finding is to improve the dynamic peripheral visual performance by up-regulating alpha activity using neuromodulation techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA