RESUMO
In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells was conducted to observe differences in protein abundance between early growth and early stationary phases. Generally higher expression of proteins involved in regulating cellular metabolism, extracellular matrix, apoptosis, protein secretion and glycosylation was found in early stationary phase. These analyses offered a systematic view of the intrinsic properties of these cells and allowed us to explore the root causes correlating culture duration with variations in the productivity and glycosylation quality of monoclonal antibodies produced with CHO cells.
Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Glucose/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Characterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads prior to the HDX-MS experiment. However, when studying protein complexes of more than two proteins, immobilization can possibly introduce steric limitations to the interactions. Here, we present a method based on the high affinity biotin-streptavidin interaction that allows selective capture of biotinylated proteins even under the extreme conditions for hydrogen/deuterium exchange quenching i.e. pH 2.5 and 0 °C. This biotin-streptavidin capture strategy allows hydrogen/deuterium exchange to occur in proteins in solution and enables characterization of specific proteins in heteromultimeric protein complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor receptor (EGFR). We present a workflow for biotinylation and characterization of recombinant antibodies and demonstrate affinity capture of biotinylated antibodies under hydrogen/deuterium exchange quench conditions by the biotin-streptavidin strategy.
Assuntos
Biotinilação , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Multimerização Proteica , Proteínas/metabolismo , Animais , Biotina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estrutura Quaternária de Proteína , Proteínas/química , Estreptavidina/metabolismo , TemperaturaRESUMO
PURPOSE: Sym004 is a novel therapeutic antibody mixture product comprising two unmarketed monoclonal antibodies (mAb) targeting the epidermal growth factor receptor (EGFR). In previous preclinical proof-of-concept studies, Sym004 was shown to elicit superior cancer cell growth inhibition activities compared with marketed anti-EGFR mAbs. This article describes the design and results of the preclinical safety program conducted to support early clinical development of Sym004. EXPERIMENTAL DESIGN: Tissue cryosections from various species were stained with Sym004 to evaluate tissue cross reactivity. The pharmacokinetics of Sym004 were evaluated in a mouse xenograft model and in Cynomolgus monkeys. Monkeys received once weekly intravenous infusions of Sym004 in the range 2 to 24 mg/kg for 6 to 8 weeks. Cetuximab (a marketed anti-EGFR mAb) and the individual antibodies comprising Sym004 were included in the repeat-dose toxicity studies at single-dose level. RESULTS: Sym004 had a staining pattern similar to cetuximab in tissue panels from both human and non-human primates. Once weekly dosing of Sym004 to Cynomolgus monkeys did not cause accumulation, whereas administration of the individual antibodies resulted in prolonged half-life and accumulation. In direct comparisons with cetuximab, Sym004 did not induce any distinct or novel adverse findings in the animals. However, an early onset of pronounced, reversible, and anticipated anti-EGFR-mediated pharmacologic effects, such as skin rash, dehydration, and liquid feces, was observed. Only minor adverse effects were recorded in animals treated with the individual antibodies comprising Sym004. CONCLUSION: Sym004 was well tolerated and did not induce any unexpected toxicities. The preclinical safety data enabled initiation of the ongoing clinical development.