Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(7): 204, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789133

RESUMO

Comparative assessment of cutaneous pharmacokinetics (cPK) by dermal microdialysis (dMD) appears to be suitable to evaluate the bioequivalence (BE) of topical dermatological drug products applied to the skin (TDDPs). Although dMD studies in the literature have reported inconclusive BE assessments, we have addressed several methodological deficiencies to improve dMD's capability to assess BE between reference (R) and approved generic (referred to as test (T)) gel and cream products of metronidazole (MTZ). The 90% confidence interval (CI) of the geometric mean ratios for the Ln(AUC0-24) and Ln(Cmax) endpoints was centered within the BE limits of 80-125%. The CIs extended outside this range as the proof-of-principle study was not statistically powered to demonstrate BE (N = 7 rabbits). A power analysis suggests that, with the variability observed in this study, 21 rabbits for the cream and 11 rabbits for the gel would be sufficient to support an evaluation of BE with the 2 probe replicates we used, and only 10 and 5 rabbits would be sufficient to power the study for the cream and gel, respectively, if 4 probe replicates are used for each treatment per rabbit. These results indicate that dMD when properly controlling variables can be used to support BE assessments for TDDPs.


Assuntos
Metronidazol , Pele , Coelhos , Animais , Equivalência Terapêutica , Metronidazol/metabolismo , Microdiálise/métodos , Pele/metabolismo , Medicamentos Genéricos/farmacocinética , Área Sob a Curva , Estudos Cross-Over
2.
Eur J Pharm Biopharm ; 175: 43-52, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526809

RESUMO

Dermal microdialysis (dMD) permits the investigation of cutaneous pharmacokinetics (cPK) for topical dermatological drug products (TDDP). dMD involves probe implantation into the dermis and a sample collection system that restricts subjects' movements for the experimental duration. A truncated dose-duration, by TDDP removal at predetermined time-points, may help to adequately characterize the cPK in a relatively short time. The goals of this study were to: assess and compare the dose-duration effect on the dermal exposure of metronidazole (MTZ) containing TDDPs; and characterize MTZ dermal elimination following TDDP application and direct dermal delivery of MTZ utilizing a retrodialysis/microdialysis approach that we termed "dermal infusion." MTZ cream and gel were applied on three Yucatan mini-pigs for dose-durations of 6-hr, 12-hr, or 48-hr. The gel's dermal exposure was similar among the three dose-durations. Conversely, at the 6-hr dose-duration, the cream's dermal exposure was significantly lower than other cream dose-durations while also comparable to the gel. In comparison, the 12-hr and 48-hr cream exposures were not significantly different. Terminal-phase half-live differences between the MTZ TDDP's and dermal-infusion indicate flip/flop cPK. Truncating topical dose-duration may provide a valuable strategy to reduce experimental duration; however, dose-duration must be carefully selected if the goal is to discriminate between formulations.


Assuntos
Metronidazol , Absorção Cutânea , Administração Cutânea , Animais , Humanos , Microdiálise , Pele/metabolismo , Suínos , Porco Miniatura
3.
Eur J Pharm Sci ; 159: 105741, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540039

RESUMO

Dermal microdialysis (dMD) can measure the rate and extent to which a topically administered active pharmaceutical ingredient (API) becomes available in the dermis. Using multiple test-sites on the same subject, and replicate probes at each test-site, it is feasible to compare the cutaneous pharmacokinetics of an API from different topical dermatological drug products in parallel on the same subject with this technique. This study design would help to reduce variability. However, there are technical considerations related to the dMD experimental methods that must be characterized and optimized to ensure that an in vivo dMD study is selective, sensitive, discriminating, and reproducible. The goals of this study were to assess: the minimum distance required between test-sites to prevent cross-talk between probes due to potential lateral-diffusion; the sensitivity of the dMD method to detect differences in the local concentration of metronidazole (MTZ) among single escalating doses; the ability to discriminate between the two different formulations; and the stability of the dMD-probes over 48 h. Results indicate that lateral-diffusion and systemic redistribution of the API following topical application of the drug product were negligible, thus MTZ measured by dMD can be selectively attributed to the dermal bioavailability of the API from the applied topical dose. The dMD methodology was able to detect differences in the bioavailability of MTZ from the cream compared to the gel when applied at the same dose, as well as among different doses of the same formulation over a 48-hour sampling duration; therefore, the method is sensitive. The percentage loss of D3-MTZ from the probe compared to its original concentration in the perfusate indicates that the probe performance was stable over the 48 h.


Assuntos
Metronidazol , Absorção Cutânea , Animais , Disponibilidade Biológica , Microdiálise , Pele/metabolismo , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA