RESUMO
OBJECTIVE: Associations between place and population health are of interest to researchers and policymakers. The objective of this paper is to explore, summarise and compare content across contemporary Australian geo-referenced population health survey data sets. METHODS: A search for recent (2015 or later) population health surveys from within Australia containing geographic information from participants was conducted. Survey response frames were analysed and categorised based on demographic, risk factor and disease-related characteristics. Analysis using interactive Sankey diagrams shows the extent of content overlap and differences between population health surveys in Australia. RESULTS: Thirteen Australian geo-referenced population health survey data sets were identified. Information captured across surveys was inconsistent as was the spatial granularity of respondent information. Health and demographic features most frequently captured were symptoms, signs and clinical findings from the International Statistical Classification of Diseases and Related Health Problems version 11, employment, housing, income, self-rated health and risk factors, including alcohol consumption, diet, medical treatments, physical activity and weight-related questions. Sankey diagrams were deployed online for use by public health researchers. CONCLUSIONS: Identifying the relationship between place and health in Australia is made more difficult by inconsistencies in information collected across surveys deployed in different regions in Australia. IMPLICATIONS FOR PUBLIC HEALTH: Public health research investigating place and health involves a vast and inconsistent patchwork of information within and across states, which may impact broad-scale research questions. The tools developed here assist public health researchers to identify surveys suitable for their research queries related to place and health.
Assuntos
Inquéritos Epidemiológicos , Saúde da População , Humanos , Austrália , Masculino , Feminino , Saúde Pública , Fatores de Risco , Nível de Saúde , Adulto , Pessoa de Meia-Idade , Fatores SocioeconômicosRESUMO
Dual-energy X-ray absorptiometry (DXA) scans are one of the most frequently used imaging techniques for calculating bone mineral density, yet calculating fracture risk using DXA image features is rarely performed. The objective of this study was to combine deep neural networks, together with DXA images and patient clinical information, to evaluate fracture risk in a cohort of adults with at least one known fall and age-matched healthy controls. DXA images of the entire body as, well as isolated images of the hip, forearm, and spine (1488 total), were obtained from 478 fallers and 48 non-faller controls. A modeling pipeline was developed for fracture risk prediction using the DXA images and clinical data. First, self-supervised pretraining of feature extractors was performed using a small vision transformer (ViT-S) and a convolutional neural network model (VGG-16 and Resnet-50). After pretraining, the feature extractors were then paired with a multilayer perceptron model, which was used for fracture risk classification. Classification was achieved with an average area under the receiver-operating characteristic curve (AUROC) score of 74.3%. This study demonstrates ViT-S as a promising neural network technique for fracture risk classification using DXA scans. The findings have future application as a fracture risk screening tool for older adults at risk of falls. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMO
In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted in restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the extent to which carbon-based transport and industrial activity affect air quality. However, quantification of these complex effects has proven to be difficult, depending on the stringency of restrictions, country-specific emission source profiles, long-term trends and meteorological effects on atmospheric chemistry, emission levels and in-flow from nearby countries. In this study, confounding factors were disentangled for a direct comparison of pandemic-related reductions in absolute pollutions levels, globally. The non-linear relationships between atmospheric processes and daily ground-level NO 2 , PM10, PM2.5 and O 3 measurements were captured in city- and pollutant-specific XGBoost models for over 700 cities, adjusting for weather, seasonality and trends. City-level modelling allowed adaptation to the distinct topography, urban morphology, climate and atmospheric conditions for each city, individually, as the weather variables that were most predictive varied across cities. Pollution forecasts for 2020 in absence of a pandemic were generated based on weather and formed an ensemble for country-level pollution reductions. Findings were robust to modelling assumptions and consistent with various published case studies. NO 2 reduced most in China, Europe and India, following severe government restrictions as part of the initial lockdowns. Reductions were highly correlated with changes in mobility levels, especially trips to transit stations, workplaces, retail and recreation venues. Further, NO 2 did not fully revert to pre-pandemic levels in 2020. Ambient PM2.5 pollution, which has severe adverse health consequences, reduced most in China and India. Since positive health effects could be offset to some extent by prolonged exposure to indoor pollution, alternative transport initiatives could prove to be an important pathway towards better health outcomes in these countries. Increased O 3 levels during initial lockdowns have been documented widely. However, our analyses also found a subsequent reduction in O 3 for many countries below what was expected based on meteorological conditions during summer months (e.g., China, United Kingdom, France, Germany, Poland, Turkey). The effects in periods with high O 3 levels are especially important for the development of effective mitigation strategies to improve health outcomes.