Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Cell ; 154(2): 297-310, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870121

RESUMO

The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sequência de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Células HCT116 , Código das Histonas , Histonas/metabolismo , Humanos , Metilação , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Transcrição Gênica
3.
J Am Chem Soc ; 146(12): 8058-8070, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491946

RESUMO

Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 µM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.


Assuntos
Aminoácidos , Peptídeos , Humanos , Peptídeos/química , Aminoácidos/química , Código Genético , RNA Mensageiro
4.
Nucleic Acids Res ; 50(21): 12543-12557, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454022

RESUMO

Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.


Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/genética
5.
Angew Chem Int Ed Engl ; : e202409973, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837490

RESUMO

Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.

6.
J Am Chem Soc ; 145(44): 23893-23898, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877712

RESUMO

Prenyltransferases in cyanobactin biosynthesis are of growing interest as peptide alkylation biocatalysts, but their prenylation modes characterized so far have been limited to dimethylallylation (C5) or geranylation (C10). Here we engaged in structure-guided engineering of the prenyl-binding pocket of a His-C2-geranyltransferase LimF to modulate its prenylation mode. Contraction of the pocket by a single mutation led to a His-C2-dimethylallyltransferase. More importantly, pocket expansion by a double mutation successfully repurposed LimF for farnesylation (C15), which is an unprecedented mode in this family. Furthermore, the obtained knowledge of the essential residues to construct the farnesyl-binding pocket has allowed for rational design of a Tyr-O-farnesyltransferase by a triple mutation of a Tyr-O-dimethylallyltransferase PagF. These results provide an approach to manipulate the prenyl specificity of cyanobactin prenyltransferases, broadening the chemical space covered by this class of enzymes and expanding the toolbox of peptide alkylation biocatalysts.


Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Peptídeos Cíclicos , Prenilação , Peptídeos/química , Especificidade por Substrato
7.
Hum Mol Genet ; 31(1): 69-81, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34346499

RESUMO

An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy and brain abnormalities, there were differences in severity, clinical course and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).


Assuntos
Fatores de Ribosilação do ADP , Transtornos do Neurodesenvolvimento , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo
8.
Genet Med ; 25(1): 90-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318270

RESUMO

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Assuntos
Encefalopatias , Distonia , Transtornos dos Movimentos , Humanos , Animais , Ratos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Transtornos dos Movimentos/genética , Aminas , Encéfalo/metabolismo
9.
J Am Chem Soc ; 144(44): 20332-20341, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282922

RESUMO

Bioengineering of ribosomally synthesized and post-translationally modified peptides (RiPPs) is an emerging approach to explore the diversity of pseudo-natural product structures for drug discovery purposes. However, despite the initial advances in this area, bioactivity reprogramming of multienzyme RiPP biosynthetic pathways remains a major challenge. Here, we report a platform for de novo discovery of functional thiopeptides based on reengineered biosynthesis of lactazole A, a RiPP natural product assembled by five biosynthetic enzymes. The platform combines in vitro biosynthesis of lactazole-like thiopeptides and mRNA display to prepare and screen large (≥1012) combinatorial libraries of pseudo-natural products. We demonstrate the utility of the developed protocols in an affinity selection against Traf2- and NCK-interacting kinase (TNIK), a protein involved in several cancers, which yielded a plethora of candidate thiopeptides. Of the 11 synthesized compounds, 9 had high affinities for the target kinase (best KD = 1.2 nM) and 10 inhibited its enzymatic activity (best Ki = 3 nM). X-ray structural analysis of the TNIK/thiopeptide interaction revealed the unique mode of substrate-competitive inhibition exhibited by two of the discovered compounds. The thiopeptides internalized to the cytosol of HEK293H cells as efficiently as the known cell-penetrating peptide Tat (4-6 µM). Accordingly, the most potent compound, TP15, inhibited TNIK in HCT116 cells. Altogether, our platform enables the exploration of pseudo-natural thiopeptides with favorable pharmacological properties in drug discovery applications.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/química , Vias Biossintéticas , Descoberta de Drogas
10.
J Am Chem Soc ; 143(44): 18481-18489, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723512

RESUMO

Cyclotides are plant-derived peptides with complex structures shaped by their head-to-tail cyclic backbone and cystine knot core. These structural features underpin the native bioactivities of cyclotides, as well as their beneficial properties as pharmaceutical leads, including high proteolytic stability and cell permeability. However, their inherent structural complexity presents a challenge for cyclotide engineering, particularly for accessing libraries of sufficient chemical diversity to design potent and selective cyclotide variants. Here, we report a strategy using mRNA display enabling us to select potent cyclotide-based FXIIa inhibitors from a library comprising more than 1012 members based on the cyclotide scaffold of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II). The most potent and selective inhibitor, cMCoFx1, has a pM inhibitory constant toward FXIIa with greater than three orders of magnitude selectivity over related serine proteases, realizing specific inhibition of the intrinsic coagulation pathway. The cocrystal structure of cMCoFx1 and FXIIa revealed interactions at several positions across the contact interface that conveyed high affinity binding, highlighting that such cyclotides are attractive cystine knot scaffolds for therapeutic development.


Assuntos
Proteínas Sanguíneas/farmacologia , Ciclotídeos/farmacologia , Fator XIIa/metabolismo , Proteínas Sanguíneas/química , Ciclotídeos/química , Fator XIIa/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos
11.
Clin Genet ; 100(6): 722-730, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569062

RESUMO

Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Proteínas do Complexo SMN/genética , Animais , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Fácies , Estudos de Associação Genética/métodos , Humanos , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Modelos Moleculares , Neurônios Motores/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Conformação Proteica , Proteínas do Complexo SMN/química , Relação Estrutura-Atividade , Sequenciamento do Exoma , Peixe-Zebra
12.
Hum Mutat ; 41(3): 591-599, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821646

RESUMO

RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.


Assuntos
Alelos , Códon , Estudos de Associação Genética , Variação Genética , Placa Neural/metabolismo , Fenótipo , Proteína rhoA de Ligação ao GTP/genética , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Placa Neural/anormalidades , Placa Neural/embriologia , Conformação Proteica , Relação Estrutura-Atividade , Adulto Jovem , Proteína rhoA de Ligação ao GTP/química
13.
J Hum Genet ; 65(5): 481-485, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32005903

RESUMO

p21-activated kinases (PAKs) are protein serine/threonine kinases stimulated by Rho-family p21 GTPases such as CDC42 and RAC. PAKs have been implicated in several human disorders, with pathogenic variants in PAK3 associated with intellectual disability and several PAK members, especially PAK1 and PAK4, overexpressed in human cancer. Recently, de novo PAK1 variants were reported to be causative of neurodevelopmental disorder (ND) with secondary macrocephaly in three patients. We herein report a fourth patient with ND, epilepsy, and macrocephaly caused by a de novo PAK1 missense variant. Two previously reported missense PAK1 variants functioned as activating alleles by reducing PAK1 homodimerization. To examine the pathogenicity of the identified novel p.Ser110Thr variant, we carried out in silico structural analysis. Our findings suggest that this variant also prevents PAK1 homodimerization, leading to constitutive PAK1 activation.


Assuntos
Epilepsia , Megalencefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Multimerização Proteica , Quinases Ativadas por p21 , Substituição de Aminoácidos , Criança , Ativação Enzimática/genética , Epilepsia/enzimologia , Epilepsia/genética , Humanos , Masculino , Megalencefalia/enzimologia , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos , Quinases Ativadas por p21/química , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
14.
Nat Chem Biol ; 14(4): 368-374, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440735

RESUMO

Protein glycosylation regulates many cellular processes. Numerous glycosyltransferases with broad substrate specificities have been structurally characterized. A novel inverting glycosyltransferase, EarP, specifically transfers rhamnose from dTDP-ß-L-rhamnose to Arg32 of bacterial translation elongation factor P (EF-P) to activate its function. Here we report a crystallographic study of Neisseria meningitidis EarP. The EarP structure contains two tandem Rossmann-fold domains, which classifies EarP in glycosyltransferase superfamily B. In contrast to other structurally characterized protein glycosyltransferases, EarP binds the entire ß-sheet structure of EF-P domain I through numerous interactions that specifically recognize its conserved residues. Thus Arg32 is properly located at the active site, and causes structural change in a conserved dTDP-ß-L-rhamnose-binding loop of EarP. Rhamnosylation by EarP should occur via an SN2 reaction, with Asp20 as the general base. The Arg32 binding and accompanying structural change of EarP may induce a change in the rhamnose-ring conformation suitable for the reaction.


Assuntos
Arginina/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ramnose/química , Cristalografia por Raios X , Dissulfetos , Escherichia coli/metabolismo , Glicosilação , Cinética , Mutação , Neisseria meningitidis/metabolismo , Açúcares de Nucleosídeo Difosfato , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Nucleotídeos de Timina
15.
J Med Genet ; 56(6): 396-407, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842224

RESUMO

BACKGROUND: Rett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES). METHODS: We performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria. RESULTS: Pathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2). CONCLUSIONS: Our study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Polimorfismo de Nucleotídeo Único
16.
Genes Dev ; 25(21): 2266-77, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22002947

RESUMO

Tri- and dimethylations of histone H3K9 (H3K9me3/2) and H3K27 (H3K27me3/2), both situated in the "A-R-Kme-S" sequence motif, mediate transcriptional repression of distinct genomic regions. H3K9me3/2 mainly governs constitutive heterochromatin formation, while H3K27me3/2 represses key developmental genes. The mechanisms by which histone-modifying enzymes selectively regulate the methylation states of H3K9 and H3K27 are poorly understood. Here we report the crystal structures of the catalytic fragment of UTX/KDM6A, an H3K27me3/2-specific demethylase, in the free and H3 peptide-bound forms. The catalytic jumonji domain binds H3 residues 25-33, recognizing H3R26, H3A29, and H3P30 in a sequence-specific manner, in addition to H3K27me3 in the catalytic pocket. A novel zinc-binding domain, conserved within the KDM6 family, binds residues 17-21 of H3. The zinc-binding domain changes its conformation upon H3 binding, and thereby recognizes the H3L20 side chain via a hydrophobic patch on its surface, which is inaccessible in the H3-free form. Mutational analyses showed that H3R17, H3L20, H3R26, H3A29, H3P30, and H3T32 are each important for demethylation. No other methyllysines in the histone tails have the same set of residues at the corresponding positions. Thus, we clarified how UTX discriminates H3K27me3/2 from the other methyllysines with distinct roles, including the near-cognate H3K9me3/2, in histones.


Assuntos
Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Catálise , Humanos , Metilação , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Chembiochem ; 19(9): 979-985, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29665240

RESUMO

The ten-eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 µm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors.


Assuntos
Metilação de DNA/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sulfetos/farmacologia , Sequência de Aminoácidos , Domínio Catalítico/efeitos dos fármacos , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Peptídeos Cíclicos/química , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Sulfetos/química
18.
J Struct Funct Genomics ; 16(1): 25-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618148

RESUMO

The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 µM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).


Assuntos
Proteínas Arqueais/química , Guanosina Trifosfato/química , Methanosarcina/química , RNA de Transferência de Cisteína/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Calorimetria , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Cinética , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Cisteína/metabolismo , Homologia de Sequência de Aminoácidos
19.
PLoS Genet ; 8(9): e1002964, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028370

RESUMO

UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X(Utx-) Y(+) mutant male embryos should phenocopy homozygous X(Utx-) X(Utx-) females. However, X(Utx-) Y(+) mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X(+) Y(Uty-) mutant males are viable. In contrast, compound hemizygous X(Utx-) Y(Uty-) males phenocopy homozygous X(Utx-) X(Utx-) females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases , Proteínas , Animais , Feminino , Hemizigoto , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Homozigoto , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Camundongos , Antígenos de Histocompatibilidade Menor , Mutação , Proteínas/genética , Proteínas/metabolismo
20.
Nat Commun ; 15(1): 3543, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730244

RESUMO

ß-N-Acetylgalactosamine-containing glycans play essential roles in several biological processes, including cell adhesion, signal transduction, and immune responses. ß-N-Acetylgalactosaminidases hydrolyze ß-N-acetylgalactosamine linkages of various glycoconjugates. However, their biological significance remains ambiguous, primarily because only one type of enzyme, exo-ß-N-acetylgalactosaminidases that specifically act on ß-N-acetylgalactosamine residues, has been documented to date. In this study, we identify four groups distributed among all three domains of life and characterize eight ß-N-acetylgalactosaminidases and ß-N-acetylhexosaminidase through sequence-based screening of deep-sea metagenomes and subsequent searching of public protein databases. Despite low sequence similarity, the crystal structures of these enzymes demonstrate that all enzymes share a prototype structure and have diversified their substrate specificities (oligosaccharide-releasing, oligosaccharide/monosaccharide-releasing, and monosaccharide-releasing) through the accumulation of mutations and insertional amino acid sequences. The diverse ß-N-acetylgalactosaminidases reported in this study could facilitate the comprehension of their structures and functions and present evolutionary pathways for expanding their substrate specificity.


Assuntos
Acetilgalactosamina , Glicosídeo Hidrolases , Metagenoma , Metagenoma/genética , Especificidade por Substrato , Acetilgalactosamina/metabolismo , Acetilgalactosamina/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/química , Filogenia , Cristalografia por Raios X , Sequência de Aminoácidos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA