Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(17): 5337-41, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870269

RESUMO

The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3-2.4 gigayears ago (Ga)] snowball Earth, δ(18)O = -43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low (18)O/(16)O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme (18)O depletion. For a Neoproterozoic (∼0.6-0.7 Ga) snowball Earth, higher meltwater δ(18)O estimates of -21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how (17)O/(16)O measurements provide information beyond traditional (18)O/(16)O measurements, even though all fractionation processes are purely mass dependent.

2.
J Cell Sci ; 128(23): 4328-40, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483384

RESUMO

In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, Tb(R332H) (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca(2+)-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca(2+)- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Animais , Cálcio/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
3.
J Cell Sci ; 126(Pt 5): 1247-59, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23378018

RESUMO

The prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca(2+)-permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by the key effector enzyme phospholipase C (PLC). Mutants lacking TRP channels undergo light-dependent retinal degeneration, as a consequence of the reduced Ca(2+) influx. It has been proposed that degeneration is caused by defects in the Ca(2+)-dependent visual pigment cycle, which result in accumulation of toxic phosphorylated metarhodopsin-arrestin complexes (MPP-Arr2). Here we show that two interventions, which prevent accumulation of MPP-Arr2, namely rearing under red light or eliminating the C-terminal rhodopsin phosphorylation sites, failed to rescue degeneration in trp mutants. Instead, degeneration in trp mutants reared under red light was rescued by mutation of PLC. Degeneration correlated closely with the light-induced depletion of PtdIns(4,5)P2 that occurs in trp mutants due to failure of Ca(2+)-dependent inhibition of PLC. Severe retinal degeneration was also induced in the dark in otherwise wild-type flies by overexpression of a bacterial PtdInsPn phosphatase (SigD) to deplete PtdIns(4,5)P2. In degenerating trp photoreceptors, phosphorylated Moesin, a PtdIns(4,5)P2-regulated membrane-cytoskeleton linker essential for normal microvillar morphology, was found to delocalize from the rhabdomere and there was extensive microvillar actin depolymerisation. The results suggest that compromised light-induced Ca(2+) influx, due to loss of TRP channels, leads to PtdIns(4,5)P2 depletion, resulting in dephosphorylation of Moesin, actin depolymerisation and disintegration of photoreceptor structure.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Degeneração Retiniana/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Drosophila , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Degeneração Retiniana/genética , Rodopsina/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
4.
J Neurophysiol ; 109(8): 2044-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365183

RESUMO

Absolute visual thresholds are limited by "dark noise," which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca(2+) in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca(2+)-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency.


Assuntos
Potenciais de Ação , Drosophila/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Cálcio/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Heterozigoto , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Limiar Sensorial , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
6.
Curr Biol ; 29(15): 2547-2554.e2, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353186

RESUMO

Endogenous rhythmic behaviors are evolutionarily conserved and essential for life. In mammalian and invertebrate models, well-characterized neuronal circuits and evolutionarily conserved mechanisms regulate circadian behavior and sleep [1-4]. In Drosophila, neuronal populations located in multiple brain regions mediate arousal, sleep drive, and homeostasis (reviewed in [3, 5-7]). Similar to mammals [8], there is also evidence that fly glial cells modulate the neuronal circuits controlling rhythmic behaviors, including sleep [1]. Here, we describe a novel gene (CG14141; aka Nkt) that is required for normal sleep. NKT is a 162-amino-acid protein with a single IgC2 immunoglobulin (Ig) domain and a high-quality signal peptide [9], and we show evidence that it is secreted, similar to its C. elegans ortholog (OIG-4) [10]. We demonstrate that Nkt-null flies or those with selective knockdown in either neurons or glia have decreased and fragmented night sleep, indicative of a non-redundant requirement in both cell types. We show that Nkt is required in fly astrocytes and in a specific set of wake-promoting neurons-the mushroom body (MB) α'ß' cells that link sleep to memory consolidation [11]. Importantly, Nkt gene expression is required in the adult nervous system for normal sleep, consistent with a physiological rather than developmental function for the Ig-domain protein.


Assuntos
Astrócitos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neurônios/metabolismo , Sono/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Domínios de Imunoglobulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino
7.
Nat Commun ; 8: 15702, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569769

RESUMO

Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km. Here we present data on I-type cosmic spherules collected in Antarctica. Their composition is compared with the composition of tropospheric O2. Our data suggest that the Earth's atmospheric O2 is isotopically homogenous up to the thermosphere. This makes fossil I-type micrometeorites ideal proxies for ancient atmospheric CO2 levels.

8.
Front Mol Neurosci ; 9: 146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066175

RESUMO

Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.

9.
Methods Enzymol ; 552: 45-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25707272

RESUMO

Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia-neuron communication contributes to the regulation of rhythmic behavior.


Assuntos
Ritmo Circadiano , Drosophila/fisiologia , Neuroglia/fisiologia , Animais , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA