Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Annu Rev Cell Dev Biol ; 39: 45-65, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37339681

RESUMO

Myriad mechanisms have evolved to adapt to changing environments. Environmental stimuli alter organisms' physiology to create memories of previous environments. Whether these environmental memories can cross the generational barrier has interested scientists for centuries. The logic of passing on information from generation to generation is not well understood. When is it useful to remember ancestral conditions, and when might it be deleterious to continue to respond to a context that may no longer exist? The key might be found in understanding the environmental conditions that trigger long-lasting adaptive responses. We discuss the logic that biological systems may use to remember environmental conditions. Responses spanning different generational timescales employ different molecular machineries and may result from differences in the duration or intensity of the exposure. Understanding the molecular components of multigenerational inheritance and the logic underlying beneficial and maladaptive adaptations is fundamental to understanding how organisms acquire and transmit environmental memories across generations.

2.
Nature ; 600(7888): 279-284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837071

RESUMO

Confocal microscopy1 remains a major workhorse in biomedical optical microscopy owing to its reliability and flexibility in imaging various samples, but suffers from substantial point spread function anisotropy, diffraction-limited resolution, depth-dependent degradation in scattering samples and volumetric bleaching2. Here we address these problems, enhancing confocal microscopy performance from the sub-micrometre to millimetre spatial scale and the millisecond to hour temporal scale, improving both lateral and axial resolution more than twofold while simultaneously reducing phototoxicity. We achieve these gains using an integrated, four-pronged approach: (1) developing compact line scanners that enable sensitive, rapid, diffraction-limited imaging over large areas; (2) combining line-scanning with multiview imaging, developing reconstruction algorithms that improve resolution isotropy and recover signal otherwise lost to scattering; (3) adapting techniques from structured illumination microscopy, achieving super-resolution imaging in densely labelled, thick samples; (4) synergizing deep learning with these advances, further improving imaging speed, resolution and duration. We demonstrate these capabilities on more than 20 distinct fixed and live samples, including protein distributions in single cells; nuclei and developing neurons in Caenorhabditis elegans embryos, larvae and adults; myoblasts in imaginal disks of Drosophila wings; and mouse renal, oesophageal, cardiac and brain tissues.


Assuntos
Aprendizado Profundo , Microscopia Confocal/métodos , Microscopia Confocal/normas , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Discos Imaginais/citologia , Camundongos , Mioblastos/citologia , Especificidade de Órgãos , Análise de Célula Única , Fixação de Tecidos
3.
Nature ; 591(7848): 99-104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627875

RESUMO

Neuropil is a fundamental form of tissue organization within the brain1, in which densely packed neurons synaptically interconnect into precise circuit architecture2,3. However, the structural and developmental principles that govern this nanoscale precision remain largely unknown4,5. Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation'6 to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy7,8 coupled with lineage-tracing and cell-tracking algorithms9,10 to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Neurópilo/química , Neurópilo/metabolismo , Algoritmos , Animais , Encéfalo/citologia , Encéfalo/embriologia , Caenorhabditis elegans/química , Caenorhabditis elegans/citologia , Movimento Celular , Difusão , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Neuritos/metabolismo , Neurópilo/citologia , Células Receptoras Sensoriais/metabolismo
4.
PLoS Genet ; 20(3): e1011178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547071

RESUMO

C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , RNA Interferente Pequeno/genética , Interferência de RNA , RNA Bacteriano/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Bactérias/genética , Bactérias/metabolismo
5.
Nat Methods ; 19(11): 1427-1437, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316563

RESUMO

We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters. By visual and quantitative analysis, we show that RLN provides better deconvolution, better generalizability and fewer artifacts than other networks, especially along the axial dimension. RLN outperforms classic Richardson-Lucy deconvolution on volumes contaminated with severe out of focus fluorescence or noise and provides four- to sixfold faster reconstructions of large, cleared-tissue datasets than classic multi-view pipelines. We demonstrate RLN's performance on cells, tissues and embryos imaged with widefield-, light-sheet-, confocal- and super-resolution microscopy.


Assuntos
Algoritmos , Aprendizado Profundo , Artefatos , Microscopia de Fluorescência , Processamento de Imagem Assistida por Computador/métodos
6.
Biophys J ; 116(8): 1456-1468, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979551

RESUMO

Cholesterol depletion by methyl-ß-cyclodextrin (MßCD) remodels the plasma membrane's mechanics in cells and its interactions with the underlying cytoskeleton, whereas in red blood cells, it is also known to cause lysis. Currently it's unclear if MßCD alters membrane tension or only enhances membrane-cytoskeleton interactions-and how this relates to cell lysis. We map membrane height fluctuations in single cells and observe that MßCD reduces temporal fluctuations robustly but flattens spatial membrane undulations only slightly. Utilizing models explicitly incorporating membrane confinement besides other viscoelastic factors, we estimate membrane mechanical parameters from the fluctuations' frequency spectrum. This helps us conclude that MßCD enhances membrane tension and does so even on ATP-depleted cell membranes where this occurs despite reduction in confinement. Additionally, on cholesterol depletion, cell membranes display higher intracellular heterogeneity in the amplitude of spatial undulations and membrane tension. MßCD also has a strong impact on the cell membrane's tenacity to mechanical stress, making cells strongly prone to rupture on hypo-osmotic shock with larger rupture diameters-an effect not hindered by actomyosin perturbations. Our study thus demonstrates that cholesterol depletion increases membrane tension and its variability, making cells prone to rupture independent of the cytoskeletal state of the cell.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , beta-Ciclodextrinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Eritrócitos/citologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Pressão Osmótica/efeitos dos fármacos , Estresse Mecânico
7.
Nat Metab ; 6(4): 724-740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418585

RESUMO

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.


Assuntos
Envelhecimento , Aminoácidos de Cadeia Ramificada , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocôndrias , Oócitos , Reprodução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Reprodução/fisiologia , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Espécies Reativas de Oxigênio/metabolismo
8.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370685

RESUMO

Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to C. elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Importantly, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with Vitamin B1, a cofactor needed for BCAA metabolism.

9.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37503135

RESUMO

Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and its transgenerational inheritance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, like PA14, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure to GRb0427, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. Using bacterial small RNA sequencing, we identified Pv1, a small RNA from GRb0427, that matches the sequence of C. elegans maco-1. We find that Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina; this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance are functional in C. elegans' natural environment, and that different bacterial small RNA-mediated regulation systems evolved independently but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.

10.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37745399

RESUMO

Programmed cell death is a common feature of animal development. During development of the C. elegans hermaphrodite, programmed cell death (PCD) removes 131 cells from stereotyped positions in the cell lineage, mostly in neuronal lineages. Blocking cell death results in supernumerary "undead" neurons. We find that undead neurons can be wired into circuits, can display activity, and can modify specific behaviors. The two undead RIM-like neurons participate in the RIM-containing circuit that computes movement. The addition of these two extra neurons results in animals that initiate fewer reversals and lengthens the duration of those reversals that do occur. We describe additional behavioral alterations of cell-death mutants, including in turning angle and pharyngeal pumping. These findings reveal that, like too much PCD, too little PCD can modify nervous system function and animal behavior.

11.
Nat Commun ; 12(1): 4795, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373460

RESUMO

Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.


Assuntos
Neurônios/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Cálcio , Expressão Gênica , Técnicas Genéticas , Hydra/genética , Hydra/fisiologia , Vias Neurais/fisiologia , Neuropeptídeos , Optogenética , Transdução de Sinais
12.
Elife ; 102021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783657

RESUMO

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Adesão Celular/genética , Neuritos/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Adesão Celular/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Sinapses
13.
J Vis Exp ; (148)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233035

RESUMO

Caenorhabditis elegans (C. elegans) stands out as the only organism in which the challenge of understanding the cellular origins of an entire nervous system can be observed, with single cell resolution, in vivo. Here, we present an integrated protocol for the examination of neurodevelopment in C. elegans embryos. Our protocol combines imaging, lineaging and neuroanatomical tracing of single cells in developing embryos. We achieve long-term, four-dimensional (4D) imaging of living C. elegans embryos with nearly isotropic spatial resolution through the use of Dual-view Inverted Selective Plane Illumination Microscopy (diSPIM). Nuclei and neuronal structures in the nematode embryos are imaged and isotropically fused to yield images with resolution of ~330 nm in all three dimensions. These minute-by-minute high-resolution 4D data sets are then analyzed to correlate definitive cell-lineage identities with gene expression and morphological dynamics at single-cell and subcellular levels of detail. Our protocol is structured to enable modular implementation of each of the described steps and enhance studies on embryogenesis, gene expression, or neurodevelopment.


Assuntos
Caenorhabditis elegans/embriologia , Linhagem da Célula , Desenvolvimento Embrionário/fisiologia , Microscopia/métodos , Animais , Núcleo Celular
14.
DNA Res ; 21(6): 711-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281544

RESUMO

Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time.


Assuntos
Escherichia coli/genética , Evolução Molecular , Resistência a Canamicina/genética , Mutação , Escherichia coli/metabolismo , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Canamicina/farmacologia , Resistência a Canamicina/efeitos dos fármacos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia
15.
Brain Stimul ; 7(3): 460-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24582373

RESUMO

BACKGROUND: Cutaneous discomfort is typically reported during transcranial direct current stimulation (tDCS), restricting the current intensity and duration at which tDCS can be applied. It is commonly thought that current density is associated with the intensity of perceived cutaneous perception such that larger electrodes with a lower current density results in milder cutaneous sensations. OBJECTIVE: The present study examined the relationship between current density, current intensity and cutaneous sensations perceived during tDCS. METHODS: Two experiments were performed. In the first control experiment, the cutaneous sensations induced by varying current intensities (0.025, 0.5, 1.0 and 1.5 mA) were examined up to 10 min. These data were used for optimizing inter-stimulation intervals in the second main experiment, where participants rated the intensity, spatial size and location of the cutaneous sensations experienced during tDCS using two electrodes sizes (16 cm2 and 35 cm2). In the equivalent current density condition, the current density was kept constant under both electrodes (0.014, 0.029 and 0.043 mA/cm2), whereas in the equal current intensity condition (0.5, 1.0 and 1.5 mA) the same intensities were used for the two electrode sizes. RESULTS: Large electrodes were associated with greater cutaneous discomfort when compared to smaller electrodes at a given current density. Further, levels of cutaneous perception were similar for small and large electrodes when current intensity was kept constant. CONCLUSION: Cutaneous sensations during stimulation can be minimized by reducing the electrode size from 35 cm2 to 16 cm2.


Assuntos
Eletrodos , Dor/prevenção & controle , Pele/patologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Adulto , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Sensação , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA