Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360711

RESUMO

The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1ß production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Piroptose , Transplante de Células-Tronco , Células-Tronco , Animais , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/terapia , Piroptose/efeitos dos fármacos , Piroptose/genética , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Mol Cell Biochem ; 439(1-2): 105-115, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28795305

RESUMO

During the past decade, microRNAs have continuously been suggested as a promising therapeutic tool due to their beneficial effects, such as their multi-targets and multi-functions in pathologic conditions. As a pathologic phenotype is generally regulated by multiple signaling pathways, in this study we identified a microRNA regulating multiple target genes within cardiac hypertrophic signaling pathways. microRNA-133a is known to play a crucial role in cardiac hypertrophy. However, the role of microRNA-133a, which may regulate several signaling pathways in norepinephrine-induced cardiac hypertrophy via multi-targeting, has not been investigated. In the current study, we showed that microRNA-133a can protect cardiomyocyte hypertrophy against norepinephrine stimulation in neonatal rat ventricular cardiomyocytes via new targets, PKCδ and Gq, all of which are related to downstream signaling pathways of the α1-adrenergic receptor. Taken together, these results suggest the advantages of the therapeutic use of microRNAs as an effective potential drug regulating multiple signaling pathways under pathologic conditions.


Assuntos
Cardiomegalia/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/patologia , Miócitos Cardíacos/patologia , Ratos , Receptor A1 de Adenosina/metabolismo
3.
Biol Res ; 51(1): 41, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384862

RESUMO

BACKGROUND: Osteoarthritis (OA) can be defined as degradation of articular cartilage of the joint, and is the most common degenerative disease. To regenerate the damaged cartilage, different experimental approaches including stem cell therapy have been tried. One of the major limitations of stem cell therapy is the poor post-transplantation survival of the stem cells. Anoikis, where insufficient matrix support and adhesion to extracellular matrix causes apoptotic cell death, is one of the main causes of the low post-transplantation survival rate of stem cells. Therefore, enhancing the initial interaction of the transplanted stem cells with chondrocytes could improve the therapeutic efficacy of stem cell therapy for OA. Previously, protein kinase C activator phorbol 12-myristate 13-acetate (PMA)-induced increase of mesenchymal stem cell adhesion via activation of focal adhesion kinase (FAK) has been reported. In the present study, we examine the effect PMA on the adipose-derived stem cells (ADSCs) adhesion and spreading to culture substrates, and further on the initial interaction between ADSC and chondrocytes. RESULTS: PMA treatment increased the initial adhesion of ADSC to culture substrate and cellular spreading with increased expression of adhesion molecules, such as FAK, vinculin, talin, and paxillin, at both RNA and protein level. Priming of ADSC with PMA increased the number of ADSCs attached to confluent layer of cultured chondrocytes compared to that of untreated ADSCs at early time point (4 h after seeding). CONCLUSION: Taken together, the results of this study suggest that priming ADSCs with PMA can increase the initial interaction with chondrocytes, and this proof of concept can be used to develop a non-invasive therapeutic approach for treating OA. It may also accelerate the regeneration process so that it can relieve the accompanied pain faster in OA patients. Further in vivo studies examining the therapeutic effect of PMA pretreatment of ADSCs for articular cartilage damage are required.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Proteína Quinase C/farmacologia , Células-Tronco/efeitos dos fármacos , Western Blotting , Adesão Celular , Comunicação Celular , Técnicas de Cultura de Células , Diferenciação Celular , Sobrevivência Celular , Condrócitos/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Cell Physiol Biochem ; 44(1): 53-65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131029

RESUMO

BACKGROUND/AIMS: Stromal vascular fraction (SVF) cells are a mixed cell population, and their regenerative capacity has been validated in various therapeutic models. The purpose of this study was to investigate the regenerative mechanisms utilized by implanted SVF cells. Using an in vitro co-culture system, we sought to determine whether SVF implantation into impaired tissue affects endogenous mesenchymal stem cell (MSC) differentiation; MSCs can differentiate into a variety of cell types, and they have a strong regenerative capacity despite their low numbers in impaired tissue. METHODS: Adipose-derived SVF cells obtained from four donors were co-cultured with bone marrow-derived MSCs, and the differential expression of osteogenic markers and osteogenic differentiation inducers over time was analyzed in mono-cultured MSCs and MSCs co-cultured with SVF cells. RESULTS: The co-cultivation of MSCs with SVF cells significantly and mutually induced the expression of osteogenic-specific markers via paracrine and/or autocrine regulation but did not induce adipocyte, chondrocyte or myoblast marker expression. More surprisingly, subsequent osteogenesis and/or comparable effects were rapidly induced within 48 h. CONCLUSION: To the best of our knowledge, this is the first study in which osteogenesis and/or comparable effects were rapidly induced in bone marrow-derived MSCs and adipose-derived SVF cells through co-cultivation. Our findings suggest that the positive effects of SVF implantation into impaired bone may be attributed to the rapid induction of MSC osteogenesis, and the transplantation of co-cultured and preconditioned SVF cells and/or MSCs may be more effective than the transplantation of untreated cells for the treatment of bone defects.


Assuntos
Células-Tronco Mesenquimais/citologia , Células Estromais/citologia , Tecido Adiposo/citologia , Adulto , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese , Osteopontina/genética , Osteopontina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/metabolismo
5.
Biochem Biophys Res Commun ; 491(2): 429-435, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28716730

RESUMO

Connexin 43 (Cx43), a ubiquitous connexin expressed in the heart and skin, is associated with a variety of hereditary conditions. Therefore, the characterization of Cx43-interacting proteins and their dynamics is important to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication but also to identify novel and unanticipated biological functions of Cx43. In the present study, we observed potential targets of Cx43 to determine new molecular functions in cardio-protection. MALDI-TOF mass spectrometry analysis of Cx43 co-immunoprecipitated proteins showed that Cx43 interacts with several proteins related to metabolism. In GeneMANIA network analysis, SGSM3, which has not been previously associated with Cx43, was highly correlated with Cx43 in heart functions, and high levels of SGSM3 appeared to induce the turnover of Cx43 through lysosomal degradation in myocardial infarcted rat hearts. Moreover, we confirmed that lysosomal degradation of Cx43 is dependent upon the interaction between SGSM3 and Cx43 in H9c2 cardiomyocytes. The functional importance of the interaction between SGSM3 and Cx43 was confirmed by results showing that Cx43 expression was enhanced by SGSM3 siRNA knockdown in H9c2 cells. In summary, the results of this study elucidate the molecular mechanisms in which Cx43 with SGSM3 is degraded in myocardial infarcted rat hearts, which may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Conexina 43/genética , Vasos Coronários/patologia , Vasos Coronários/cirurgia , Junções Comunicantes/patologia , Junções Comunicantes/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ligadura , Lisossomos/metabolismo , Masculino , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
6.
J Vasc Res ; 54(2): 100-108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28407626

RESUMO

Adult stem cells have been studied as a promising therapeutic modality for the functional restoration of the damaged heart. In the present study, a strategy for enhancing the angiogenic efficacy of human mesenchymal stem cells (hMSCs) using micro-RNA was examined. We investigated whether micro-RNA-146a (miR-146a) influences the secretion of vascular endothelial growth factor (VEGF) and angiogenesis of MSCs. Our data indicated that miR-146a-transfected hMSCs (hMSCmiR-146a) decreased the expression of neurofibromin 2, an inhibitor of p21-activated kinase-1 (PAK1). miR-146a also increased the expression of Ras-related C3 botulinum toxin substrate 1 and PAK1, which are known to induce VEGF expression, and the formation of vascular branches was increased in hMSCmiR-146a compared to hMSCs treated with VEGF. VEGF and p-Akt were increased in hMSCmiR-146a. Furthermore, injection of hMSCmiR-146a after ischemia/reperfusion (I/R) injury led to a reduction of fibrosis area and increased VEGF expression, confirming the regenerative capacity such as reparative angiogenesis in the infarcted area. Cardiac functions in I/R injury were improved following injection of hMSCmiR-146a compared to the I/R group. Taken together, these data suggest that miR-146 is a novel microRNA that regulates VEGF expression, and its use may be an effective strategy for enhancing the therapeutic efficacy of hMSC transplantation into the I/R-injured heart.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miocárdio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neovascularização Fisiológica , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
7.
Int J Med Sci ; 14(9): 911-919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824330

RESUMO

Stromal vascular fractions (SVFs) are a heterogeneous collection of cells within adipose tissue that are being studied for various clinical indications. In this study, we aimed to determine whether SVF transplantation into impaired tissues has differential effects on inflammatory and angiogenetic properties with regard to gender. As reactive oxygen species have been implicated in cardiovascular disease development, we investigated differences in gene and protein expression related to inflammation and angiogenesis in HUVECs co-cultured with adipose-derived SVFs from male (M group) and female (F group) individuals under oxidative stress conditions. The expression of several inflammatory (interleukin (IL)-33) and angiogenetic (platelet-derived growth factor (PDGF)) factors differed dramatically between male and female donors. Anti-inflammatory and pro-angiogenetic responses were observed in HUVECs co-cultured with SVFs under oxidative stress conditions, and these characteristics may exhibit partially differential effects according to gender. Using network analysis, we showed that co-culturing HUVECs with SVFs ameliorated pyroptosis/apoptosis via an increase in oxidative stress. Activation of caspase-1 and IL-1B was significantly altered in HUVECs co-cultured with SVFs from female donors. These findings regarding gender-dimorphic regulation of adipose-derived SVFs provide valuable information that can be used for evidence-based gender-specific clinical treatment of SVF transplantation for understanding of cardiovascular disease, allowing for the development of additional treatment.


Assuntos
Inflamação/genética , Neovascularização Patológica/genética , Obesidade/genética , Estresse Oxidativo/genética , Células Estromais/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Apoptose/genética , Diferenciação Celular , Linhagem da Célula/genética , Técnicas de Cocultura , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/patologia , Interleucina-33/genética , Masculino , Neovascularização Patológica/patologia , Obesidade/patologia , Fator de Crescimento Derivado de Plaquetas , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Caracteres Sexuais , Células Estromais/metabolismo
8.
Biol Res ; 50(1): 1, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100269

RESUMO

BACKGROUND: Pathologic vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury promotes the development of occlusive vascular disease. Therefore, an effective chemical agent to suppress aberrant proliferation and migration of VSMCs can be a potential therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. To find an anti-proliferative chemical agent for VSMCs, we screened an in-house small molecule library, and the selected small molecule was further validated for its anti-proliferative effect on VSMCs using multiple approaches, such as cell proliferation assays, wound healing assays, transwell migration assays, and ex vivo aortic ring assay. RESULTS: Among 43 initially screened small molecule inhibitors of kinases that have no known anti-proliferative effect on VSMCs, a spleen tyrosine kinase (Syk) inhibitor (BAY61-3606) showed significant anti-proliferative effect on VSMCs. Further experiments indicated that BAY61 attenuated the VSMC proliferation in both concentration- and time-dependent manner, and it also significantly suppressed the migration of VSMCs as assessed by both wound healing assays and transwell assays. Additionally, BAY61 suppressed the sprouting of VSMCs from endothelium-removed aortic rings. CONCLUSION: The present study identified a Syk kinase inhibitor as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its underlying molecular mechanisms, such as its primary target, and to validate its in vivo efficacy as a therapeutic agent for restenosis and atherosclerosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Niacinamida/análogos & derivados , Pirimidinas/farmacologia , Quinase Syk/antagonistas & inibidores , Animais , Aorta Torácica/efeitos dos fármacos , Western Blotting , Ensaios de Migração Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Músculo Liso Vascular/citologia , Niacinamida/farmacologia , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Fatores de Tempo , Cicatrização/efeitos dos fármacos
9.
Cell Physiol Biochem ; 39(4): 1595-607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627433

RESUMO

BACKGROUND/AIMS: It is known that mesenchymal stem cells (MSCs) can have variable responses to hypoxic conditions and that hypoxia may specifically stimulate differentiation into osteogenic, chondrogenic, or adipogenic cells. Based on our previous study, we hypothesized that hypoxia may also induce MSC differentiation into cardiomyocytes and/or cells with comparable phenotypes. METHODS: The differences in the proteomes were specifically investigated in bone marrow-derived rat MSCs (BM-rMSCs) under normoxic and hypoxic conditions using 2-DE combined with a MALDI-TOF-MS analysis and western blot analysis. In addition, genetic and/or proteomic interactions were assessed using a String network analysis. RESULTS: Among the 35 markedly changed spots from a total of 393 matched spots, 24 were highly up-regulated and 11 were significantly down-regulated in hypoxic rMSCs based on a proteomic analysis. Although hypoxia failed to induce the direct differentiation of rMSCs into cardiomyocytes, several cardiomyocyte differentiation-related genes and proteins were significantly increased by hypoxic stress. CONCLUSION: We found that BM-rMSCs alter their expression of several cardiomyocyte differentiation-related genes and proteins under hypoxic conditions, and we examined the interactions between these genes and/or proteins, providing new insights for the applicability of MSCs preconditioned by hypoxic stimulation for use in cardiac diseases.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Proteoma/genética , Animais , Células da Medula Óssea/citologia , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Cultura Primária de Células , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
10.
Cell Physiol Biochem ; 40(1-2): 400-410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27866198

RESUMO

BACKGROUND/AIMS: We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. METHODS: To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. RESULTS: The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO) Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. CONCLUSION: Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Proteômica/métodos , Animais , Hipóxia Celular , Eletroforese em Gel Bidimensional , Redes Reguladoras de Genes , Células-Tronco Mesenquimais/efeitos dos fármacos , Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Coloração pela Prata , Tropomiosina/metabolismo
11.
Bioorg Med Chem Lett ; 26(20): 5098-5102, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614412

RESUMO

The restoration of damaged articular cartilage is a long-pursued goal in regenerative medicine. Chondrocyte-specific differentiation of mesenchymal stem cells (MSCs) may be an effective means of repairing damaged cartilage. We identified small molecule 6 with sulfonamide as an agent that promotes specific chondrogenic differentiation of human adipose-derived MSCs (hASCs). Unlike other chondrogenic differentiation media composed of various defined components, simply adding compound 6 into culture medium was sufficient to induce chondrogenesis in this study. In an animal osteoarthritis model, both the small molecule 6 and the 6-treated hASCs exhibited enhanced recovery of injured articular cartilage. This work provides new insight into MSC differentiation induced by small molecules and potential new therapeutic approaches for articular cartilage injury.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Sulfonamidas/farmacologia , Cartilagem Articular/citologia , Diferenciação Celular , Condrócitos/citologia , Meios de Cultura , Ensaio de Imunoadsorção Enzimática , Humanos , Células-Tronco Mesenquimais/citologia , Regeneração
12.
Int J Mol Sci ; 17(10)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27775615

RESUMO

Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.


Assuntos
Apoptose/genética , MAP Quinase Quinase Quinase 5/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Estresse Oxidativo/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/genética , Humanos , Infarto do Miocárdio , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo
13.
J Cell Biochem ; 116(4): 648-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25399916

RESUMO

Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.


Assuntos
Reestenose Coronária/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Proteína Quinase C-delta/metabolismo , Angiotensina II/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neointima/metabolismo , Fosforilação , Ratos
14.
J Cell Biochem ; 116(4): 598-608, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25389122

RESUMO

The proliferation and migration of smooth muscle cells (SMCs) are considered to be key steps in the progression of atherosclerosis and restenosis. Certain stimuli, such as, interleukin-3 (IL-3) are known to stimulate proliferation and migration in vascular diseases. Meanwhile, microRNAs (miRs) have been revealed as critical modulators of various diseases in which miR-29b is known to regulate cell growth by targeting Mcl-1 and MMP2. However, roles of miR-29b in vascular smooth muscle cells remain almost unknown. We hypothesized that miR-29b may control the proliferation and migration processes induced by IL-3 stimulation by inhibiting its own specific targets in SMCs. MiR-29b significantly suppressed the proliferation and migration of SMCs through the inhibition of the signaling pathway related to Mcl-1 and MMP2. We also found that miR-29b expression levels significantly declined in balloon-injured rat carotid arteries and that the overexpression of miR-29b by local oligonucleotide delivery can inhibit neointimal formation. Consistent with the critical role of miR-29b in vitro, we observed down-regulated expression levels of Mcl-1 and MMP2 from the neointimal region. These results indicate that miR-29b suppressed the proliferation and migration of SMCs, possibly through the inhibition of Mcl-1 and MMP2, and suggest that miR-29b may serve as a useful therapeutic tool to treat cardiovascular diseases such as, atherosclerosis and restenosis.


Assuntos
Lesões das Artérias Carótidas/genética , Interleucina-3/farmacologia , MicroRNAs/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Neointima/genética , Animais , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Miócitos de Músculo Liso/citologia , Ratos , Ratos Sprague-Dawley
15.
Biochem Biophys Res Commun ; 465(2): 299-304, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26265044

RESUMO

Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent.


Assuntos
Apoptose/genética , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptossomas/efeitos dos fármacos , Apoptossomas/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
16.
Biochem Biophys Res Commun ; 460(4): 931-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839659

RESUMO

During ischemia-reperfusion (IR) injury of the heart, Ca(2+) overload occurs, leading to cardiomyocyte dysfunction and eventual cell death by apoptosis. Since preventing Ca(2+) overload during IR injury has been reported to protect cardiomyocytes, interrupting Ca(2+) signaling cascades leading to Ca(2+) overload may exert protective effect on cardiomyocytes under hypoxic condition. One of the key regulators of the intracellular Ca(2+) level during IR injury is Na(+)-Ca(2+) exchanger 1 (NCX1), whose down-regulation during IR injury conferred protection of heart. In the present study, we examined whether down-regulation of NCX1 using exogenous microRNA ameliorates apoptosis of cardiomyocytes under hypoxic condition. Here, we identified miR-132 as a novel microRNA targeting the NCX1, whose expression increased during hypoxia. Delivery of miR-132 suppressed the increase of intracellular Ca(2+) in cardiomyocytes under hypoxia, and the expressions of apoptotic molecules, such as Bax, cytochrome C, and caspase 3, and the number of apoptotic cells were also decreased by exogenous miR-132 treatment. These results suggest the potential of miR-132 as an effective therapeutic agent against IR damage to heart by preventing Ca(2+) overload during hypoxic condition and warrant further studies to validate its anti-apoptotic effect in vivo.


Assuntos
Apoptose , Cálcio/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Células Cultivadas , Miócitos Cardíacos/citologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
17.
Biochem Biophys Res Commun ; 465(3): 349-55, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26253469

RESUMO

Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Cardiomegalia/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Insuficiência Cardíaca/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Ratos , Ratos Sprague-Dawley , Transativadores/genética
18.
Biol Res ; 48: 45, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26283227

RESUMO

BACKGROUND: Low survival rate of transplanted cells compromises the efficacy of cell therapy. Hexokinase II (HKII) is known to have anti-apoptotic activity through its interaction with mitochondria. The objective was to identify miRNAs targeting HKII and investigate whether miRNA-mediated modulation of HKII could improve the survival of mesenchymal stem cells (MSCs) exposed to H2O2. The expression of HKII in MSCs exposed to H2O2 was evaluated, and HKII-targeting miRNA was screened based on miRNA-target prediction databases. The effect of H2O2 on the expression of the selected HKII-targeting miRNA was examined and the effect of modulation of the selected HKII-targeting miRNA using anti-miRNA on H2O2-induced apoptosis of MSC was evaluated. RESULTS: H2O2 (600 µM) induced cell death of MSCs and decreased mitochondrial HKII expression. We have identified miR-181a as a HKII-targeting miRNA and H2O2 increased the expression of miR-181a in MSCs. Delivery of anti-miR-181a, which neutralizes endogenous miR-181a, significantly attenuated H2O2-induced decrease of HKII expression and disruption of mitochondrial membrane potential, improving the survival of MSCs exposed to H2O2. CONCLUSIONS: These findings suggest that H2O2-induced up-regulation of miR-181a contributes to the cell death of MSCs by down-regulating HKII. Neutralizing miR-181a can be an effective way to prime MSCs for transplantation into ischemic tissues.


Assuntos
Apoptose , Glioma/patologia , Hexoquinase/metabolismo , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/patologia , MicroRNAs/metabolismo , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Glioma/metabolismo , Humanos , Peróxido de Hidrogênio/administração & dosagem , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , MicroRNAs/antagonistas & inibidores , Mitocôndrias/enzimologia , Invasividade Neoplásica , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Semaforinas/genética , Semaforinas/metabolismo
19.
J Cell Biochem ; 115(10): 1752-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24819721

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of disease progression in atherosclerosis. Cell proliferation is regulated by cell cycle regulatory proteins. MicroRNAs (miR) have been reported to act as important gene regulators and play essential roles in the proliferation and migration of VSMCs in a cardiovascular disease. However, the roles and mechanisms of miRs in VSMCs and neointimal formation are far from being fully understood. In this study, cell cycle-specific cyclin D1 was found to be a potential target of miR-365 by direct binding. Through an in vitro experiment, we showed that exogenous miR-365 overexpression reduced VSMC proliferation and proliferating cell nuclear antigen (PCNA) expression, while miR-365 was observed to block G1/S transition in platelet-derived growth factor-bb (PDGF-bb)-induced VSMCs. In addition, the proliferation of VSMCs by various stimuli, including PDGF-bb, angiotensin II (Ang II), and serum, led to the downregulation of miR-365 expression levels. The expression of miR-365 was confirmed in balloon-injured carotid arteries. Taken together, our results suggest an anti-proliferative role for miR-365 in VSMC proliferation, at least partly via modulating the expression of cyclin D1. Therefore, miR-365 may influence neointimal formation in atherosclerosis patients.


Assuntos
Aterosclerose/patologia , Ciclina D1/biossíntese , MicroRNAs/genética , Músculo Liso Vascular/crescimento & desenvolvimento , Neointima/genética , Angiotensina II/farmacologia , Animais , Becaplermina , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Divisão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo , MicroRNAs/biossíntese , Músculo Liso Vascular/citologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas de Ligação a RNA , Ratos , Pontos de Checagem da Fase S do Ciclo Celular/genética
20.
Biochem Biophys Res Commun ; 435(4): 720-6, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23702479

RESUMO

A change in intracellular free calcium (Ca(2+)) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca(2+) signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca(2+)-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H2O2-mediated Ca(2+) overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca(2+) overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca(2+)-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca(2+) overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , MicroRNAs/farmacologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA