RESUMO
Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420-730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1-4 log CFU·cm-2) and S. typhimurium (1-6 log CFU·cm-2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.
Assuntos
Escherichia coli O157 , Bactérias , Biofilmes , Contagem de Colônia Microbiana , Análise Discriminante , Microbiologia de Alimentos , Imageamento Hiperespectral , Aço InoxidávelRESUMO
Contamination is a critical issue that affects food consumption adversely. Therefore, efficient detection and classification of food contaminants are essential to ensure food safety. This study applied a visible and near-infrared (VNIR) hyperspectral imaging technique to detect and classify organic residues on the metallic surfaces of food processing machinery. The experimental analysis was performed by diluting both potato and spinach juices to six different concentration levels using distilled water. The 3D hypercube data were acquired in the range of 400-1000 nm using a line-scan VNIR hyperspectral imaging system. Each diluted residue in the spectral domain was detected and classified using six classification methods, including a 1D convolutional neural network (CNN-1D) and five pre-processing methods. Among them, CNN-1D exhibited the highest classification accuracy, with a 0.99 and 0.98 calibration result and a 0.94 validation result for both spinach and potato residues. Therefore, in comparison with the validation accuracy of the support vector machine classifier (0.9 and 0.92 for spinach and potato, respectively), the CNN-1D technique demonstrated improved performance. Hence, the VNIR hyperspectral imaging technique with deep learning can potentially afford rapid and non-destructive detection and classification of organic residues in food facilities.
Assuntos
Aprendizado Profundo , Imageamento Hiperespectral , Redes Neurais de Computação , Projetos Piloto , VerdurasRESUMO
Meat consumption has shifted from a quantitative to a qualitative growth stage due to improved living standards and economic development. Recently, consumers have paid attention to quality and safety in their decision to purchase meat. However, foreign substances which are not normal food ingredients are unintentionally incorporated into meat. These should be eliminated as a hazard to quality or safety. It is important to find a fast, non-destructive, and accurate detection technique of foreign substance in the meat processing industry. Hyperspectral imaging technology has been regarded as a novel technology capable of providing large-scale imaging and continuous observation information on agricultural products and food. In this study, we considered the feasibility of the short-wave near infrared (SWIR) hyperspectral reflectance imaging technique to detect bone fragments embedded in chicken meat. De-boned chicken breast samples with thicknesses of 3, 6, and 9-mm and 5 bone fragments with lengths of about 20-30-mm are used for this experiment. The reflectance spectra (in the wavelength range from 987 to 1701-nm) of the 5 bone fragments embedded under the chicken breast fillet are collected. Our results suggested that these hyperspectral imaging technique is able to detect bone fragments in chicken breast, particularly with the use of a subtraction image (corresponding to image at 1153.8-nm and 1480.2-nm). Thus, the SWIR hyperspectral reflectance imaging technique can be potentially used to detect foreign substance embedded in meat.
Assuntos
Imageamento Hiperespectral , Carne/análise , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
OBJECTIVE: The aim of this study was to identify a distribution pattern of meat quality grade (MQG) as a function of carcass yield index (CYI) and the gender of Hanwoo (bull, cow, and steer) to determine the optimum point between both yield and quality. We also attempted to identify how pre- and post-deboning variables affect the gender-specific beef quality of Hanwoo. METHODS: A total of 31 deboning variables, consisting of 7 pre-deboning and 24 post-deboning variables from bulls (n = 139), cows (n = 69), and steers (n = 153), were obtained from the National Institute of Animal Science (NIAS) in South Korea. The database was reconstructed to be suitable for a statistical significance test between the CYI and the MQG as well as classification of meat quality. Discriminant function analysis was used for classifying MQG using the deboning parameters of Hanwoo by gender. RESULTS: The means of CYI according to 1+, 1, 2, and 3 of MQG were 68.64±2.02, 68.85±1.94, 68.62±5.88, and 70.99±3.32, respectively. High carcass yield correlated with low-quality grade, while high-quality meat most frequently was obtained from steers. The classification ability of pre-deboning parameters was higher than that of post-deboning parameters. Moisture and the shear force were the common significant parameters in all discriminant functions having a classification accuracy of 80.6%, 71%, and 56.9% for the bull, cow, and steer, respectively. CONCLUSION: This study provides basic information for predicting the meat quality by gender using pre-deboning variables consistent with the actual grading index.
RESUMO
OBJECTIVE: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. METHODS: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. RESULTS: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. CONCLUSION: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.
RESUMO
Rapid and reliable inspection of food is essential to ensure food safety, particularly in mass production and processing environments. Many studies have focused on spectral imaging for poultry inspection; however, no research has explored the use of multispectral fluorescence imaging (MFI) for on-line poultry inspection. In this study, the feasibility of MFI for on-line detection of fecal matter from the ceca, colon, duodenum, and small intestine of poultry carcasses was investigated for the first time. A multispectral line-scan fluorescence imaging system was integrated with a commercial poultry conveying system, and the images of chicken carcasses with fecal contaminants were scanned at processing line speeds of one, three, and five birds per second. To develop an optimal detection and classification algorithm to distinguish upper and lower feces-contaminated parts from skin, the principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were first performed using the spectral data of the selected regions, and then applied in spatial domain to visualize the feces-contaminated area based on binary images. Our results demonstrated that for the spectral data analysis, both the PCA and PLS-DA can distinguish the high and low feces-contaminated area from normal skin; however, the PCA analysis based on selected band ratio images (F630 nm/F600 nm) exhibited better visualization and discrimination of feces-contaminated area, compared with the PLS-DA-based developed chemical images. A color image analysis using histogram equalization, sharpening, median filter, and threshold value (1) demonstrated 78% accuracy. Thus, the MFI system can be developed utilizing the two band ratios for on-line implementation for the effective detection of fecal contamination on chicken carcasses.
Assuntos
Fezes/química , Contaminação de Alimentos/análise , Imagem Óptica/métodos , Algoritmos , Animais , Galinhas , Análise Discriminante , Carne/análise , Análise de Componente PrincipalRESUMO
The magnetorheological (MR) performance of suspensions based on core-shell-structured foamed polystyrene (PSF)/Fe3O4 particles was investigated by using a vibrating sample magnetometer and a rotational rheometer. Core-shell-structured polystyrene (PS)/Fe3O4 was synthesized by using the Pickering-emulsion polymerization method in which Fe3O4 nanoparticles were added as a solid surfactant. Foaming the PS core in PS/Fe3O4 particles was carried out by using a supercritical carbon dioxide (scCO2) fluid. The density was measured by a pycnometer. The densities of PS/Fe3O4 and PSF/Fe3O4 particles were significantly lowered from that of the pure Fe3O4 particle after Pickering-emulsion polymerization and foaming treatment. All tested suspensions displayed similar MR behaviors but different yield strengths. The important parameter that determined the MR performance was not the particle density but rather the surface density of Fe3O4 on the PS core surface. The morphology was observed by scanning electron microscopy and transmission electron microscopy. Most Fe3O4 particles stayed on the surface of PS/Fe3O4 particles, making the surface topology bumpy and rough, which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to examine the sedimentation properties of different particle suspensions. The suspensions of PS/Fe3O4 and PSF/Fe3O4 showed remarkably improved stability against sedimentation, much better than the bare Fe3O4 particle suspension because of the reduced density mismatch between the nanoparticles and the carrier medium as well as the surface topology change.
RESUMO
Long commuting times can induce work-related low back pain (LBP), which can be exacerbated by reduced sports and leisure activities. However, there is a lack of empirical research on commuting time and work-related LBP in Korea. In this study, we aimed to investigate the relationship between commuting time and work-related LBP as well as the effect of sports and leisure activities on Korean workers. We utilized data from the sixth Korean Working Conditions Survey to analyze the relationship between commuting time and work-related LBP using multivariable logistic regression. The total number of included workers was 28,202. Workers without sports and leisure activities, and long commuting times (40-59, 60-79, and ≥80 min) showed significantly higher odds ratios for work-related LBP (1.29 [95% Confidence intervals=1.12-1.49], 1.42 [1.22-1.65], and 1.96 [1.68-2.28], respectively). However, in workers with sports and leisure activities, the results were significant only for commuting times of 60-79 and ≥80 min (1.41 [1.13-1.75], 1.60 [1.28-1.99], respectively). Long commuting times were associated with work-related LBP, and engagement in sports and leisure activities was found to play a role in mitigating the impact among Korean wage workers.
Assuntos
Dor Lombar , Esportes , Humanos , Dor Lombar/epidemiologia , Atividades de Lazer , Inquéritos e Questionários , Meios de Transporte , República da Coreia/epidemiologiaRESUMO
This animal study was aimed to evaluate the efficacy of new bone formation and volume maintenance according to the particle type and the collagen membrane function for grafted octacalcium phosphate (OCP) in rabbit calvarial defects. The synthetic bone substitutes were prepared in powder form with 90% OCP and granular form with 76% OCP, respectively. The calvarial defects were divided into four groups according to the particle type and the membrane application. All specimens were acquired 2 weeks (n = 5) and 8 weeks (n = 5) after surgery. According to the micro-CT results, the new bone volume increased at 2 weeks in the 76% OCP groups compared to the 90% OCP groups, and the bone volume ratio was significantly lower in the 90% OCP group after 2 weeks. The histomorphometric analysis results indicated that the new bone area and its ratio in all experimental groups were increased at 8 weeks except for the group with 90% OCP without a membrane. Furthermore, the residual bone graft area and its ratio in the 90% OCP groups were decreased at 8 weeks. In conclusion, all types of OCP could be applied as biocompatible bone graft materials regardless of its density and membrane application. Neither the OCP concentration nor the membrane application had a significant effect on new bone formation in the defect area, but the higher the OCP concentration, the less graft volume maintenance was needed.
RESUMO
For the preparation of nanocomposites, we conducted environmentally benign foaming processing on polypropylene (PP) copolymer/clay nanocomposites via a batch process in an autoclave. We investigated the dispersion and the exfoliation of the nanoclay particles. Full exfoliation was achieved by the foamability of the matrix PP copolymer using supercritical carbon dioxide (sc CO2) and subcritical carbon dioxide (sub CO2). More and smaller cells were observed when the clay was blended as heterogeneous nuclei and sc CO2 was used. Small angle X-ray scattering showed that highly dispersed states (exfoliation) of the clay particles were obtained by the foaming process. Since the clay particles provided more nucleating sites for the foaming of the polymer, a well dispersed (or fully exfoliated) nanocomposite exhibited a higher cell density and a smaller cell size at the same clay particle concentration. Expansion of the adsorbed CO2 facilitated the exfoliation of the clay platelets; thus, sc CO2 at lower temperature was more efficient for uniform foaming-cell production. Fully dispersed clay platelets were, however, re-aggregated when subjected to a further melting processing. The reprocessed nanocomposites still had some exfoliated platelets as well as some aggregated intercalates. The dual role of the nanoclay particles as foaming nucleus and a crystallization nucleus was confirmed by cell growth observation and nonisothermal crystallization kinetics analysis. A low foaming temperature and a high saturation pressure were more favorable for obtaining a uniform foam. The PP copolymer was found to be foamed more easily than polypropylene. A small amount of other olefin moieties in the backbone of the polymer facilitated better foamability than the neat polypropylene.
Assuntos
Dióxido de Carbono/química , Polipropilenos/química , Cristalização , Cinética , Nanopartículas/química , TemperaturaRESUMO
With growing consumer interest in meat quality, the need for accurate quality assessment becomes increasingly important. One crucial factor of Korean beef quality is the longissimus muscle area, which is closely associated with both quality and yield grade. Currently, the measurement is visually assessed, introducing subjectivity and placing a substantial burden on inspectors in terms of labor. To address these challenges, we have developed a compact image acquisition system designed to acquire accurate grading assessment images of beef carcasses. Several preprocessing steps after image acquisition were conducted, including radial distortion correction and color calibration. We have employed conventional image-processing techniques and four deep-learning models to segment the longissimus muscle area using the calibrated images. Among the segmentation models, DeepLab model based on ResNet50 achieved the highest accuracy. It demonstrated a Global Accuracy, Weighted IoU, and Mean BF Score of approximately 99.26%, 98.54%, and 95.70%, respectively. The results of our study are expected to contribute to the development of objective criteria for loin area assessment. By enabling precise and consistent determination of beef carcass quality, our research has the potential to reduce labor requirements for inspectors and provide a standardized approach to assessing loin area.
RESUMO
PURPOSE: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. METHODS: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. RESULTS: Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. CONCLUSIONS: There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.
RESUMO
We studied depth-dependent cerebral hemodynamic responses of rat brain following direct cortical electrical stimulation (DCES) in vivo with optical recording of intrinsic signal (ORIS) and near-infrared spectroscopy (NIRS). ORIS is used to visualize the immediate hemodynamic changes in cortical areas following the stimulation, whereas NIRS measures the hemodynamic changes originating from subcortical areas. We found strong hemodynamic changes in relation to DCES both in ORIS and NIRS data. In particular, the signals originating from cortical areas exhibited a tri-phasic response, whereas those originating from subcortical regions exhibited multi-phasic responses. In addition, NIRS signals from two different sets of source-detector separation were compared and analyzed to investigate the causality of perfusion, which demonstrated downstream propagation, indicating that the upper brain region reacted faster than the deep region.
Assuntos
Mapeamento Encefálico/instrumentação , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Estimulação Encefálica Profunda/instrumentação , Oxigênio/análise , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Imagens com Corantes Sensíveis à Voltagem/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Ratos , Ratos Sprague-Dawley , Integração de SistemasRESUMO
A model capable of describing the flow behavior of electrorheological (ER) suspensions under different electric field strengths and over the full range of shear rates is proposed. Structural reformation in the low shear rate region is investigated where parts of a material are in an undeformed state, while aligned structures reform under the shear force. The model's predictions were compared with the experimental data of some ER fluids as well as the CCJ (Cho-Choi-Jhon) model. This simple model's predictions of suspension flow behavior with subsequent aligned structure reformation agreed well with the experimental data, both quantitatively and qualitatively. The proposed model plausibly predicted the static yield stress, whereas the CCJ model and the Bingham model predicted only the dynamic yield stress. The master curve describing the apparent viscosity was obtained by appropriate scaling both axes, which showed that a combination of dimensional analysis and flow curve analysis using the proposed model yielded a quantitatively and qualitatively precise description of ER fluid rheological behavior based on relatively few experimental measurements.
RESUMO
In this work, we investigated the effect of a change in the molecular structure and ensuing molar mass change of a matrix polymer (polyamide 6, Ny 6) on droplet deformation of a dispersed thermotropic liquid crystalline polymer (TLCP, a poly(ester amide)) in shear flow. This study focuses on a total capillary number (the sum of the shear capillary number and the elasticity capillary number) and the viscosity ratio between the TLCP and Ny 6, for the morphological development and mechanical performance of TLCP/Ny 6 blends. In contrast to Ny 6, which has a lower melt viscosity than the TLCP melt, a modified Ny 6 (m-Ny 6) with ca. 2 orders higher melt viscosity than that of Ny 6 at a shear rate of 1 s-1 was found to facilitate the deformation of the TLCP phase. A total capillary number was defined to characterize the viscoelasticity effect on droplet deformation in the blend system. The first normal stress difference obtained from the viscosity curve using Steller's method was used for the evaluation of the elasticity capillary number. The total capillary number for the Ny 6 blend was far less than the critical capillary number and was insufficient for the dispersed TLCP droplets to be deformed. The shear capillary number of the m-Ny 6 blend was greater than the critical capillary number but was still insufficient for droplet deformation into fibril shapes. The total capillary number, including the elastic capillary number, was sufficiently greater than the critical capillary number for deformation of the dispersed TLCP droplets. Morphological observations and a comparison with the theoretical work confirmed the importance of the viscoelasticity of the melt in the immiscible Ny 6/TLCP blends for in situ composite fabrication in shear flow. Both the high viscosity and the first normal stress difference of m-Ny 6 promote the deformation and fibrillation of the dispersed TLCP droplets.
RESUMO
BACKGROUND: Biphasic calcium phosphate (BCP) is the most frequently used synthetic bone substitutes, which comprises a combination of hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP). Thanks to the recent advances in digital dentistry and three-dimensional (3D) printing technology, synthetic block bone substitutes can be customized to fit individual defect morphologies. The diameter of the pores can influence the rate of bone formation and material resorption. The aim of this study was to compare three-dimensionally printed biphasic calcium phosphate (BCP) block bone substitutes with different pore diameters (0.8-, 1.0-, and 1.2- mm) for use in the regeneration of rabbit calvarial defects. METHODS: Four circular defects were formed on the calvaria of ten rabbits. Each defect was randomly allocated to one of the following study groups: (i) control group, (ii) 0.8-mm group, (iii) 1.0-mm group, and (iv) 1.2-mm group. All specimens were postoperatively harvested at 2 and 8 weeks, and radiographic and histomorphometric analyses were performed on the samples. RESULTS: Histologically, the BCP blocks remained unresorbed up to 8 weeks, and new bone formation occurred within the porous structures of the blocks. After the short healing period of 2 weeks, histomorphometric analysis indicated that new bone formation was significantly greater in the BCP groups compared with the control (p < 0.05). However, there were no significant differences between the groups with different pore diameters (p > 0.05). At 8 weeks, only the 1.0-mm group (3.42 ± 0.48 mm2, mean ± standard deviation) presented a significantly larger area of new bone compared with the control (2.26 ± 0.59 mm2) (p < 0.05). Among the BCP groups, the 1.0- and 1.2-mm groups exhibited significantly larger areas of new bone compared with the 0.8-mm group (3.42 ± 0.48 and 3.04 ± 0.66 vs 1.60 ± 0.70 mm2, respectively). CONCLUSIONS: Within the limitations of this study, the BCP block bone substitutes can be applied to bone defects for successful bone regeneration. Future studies should investigate more-challenging defect configurations prior to considering clinical applications.
RESUMO
The morphological development and thermal properties of different polyamides with long-chain branches without forming a network structure were characterized by differential scanning calorimetry, polarized optical microscopy, and nonisothermal crystallization kinetics. The crystallization characteristics were analyzed using the nonisothermal kinetic equation proposed by Seo. Polarized optical microscopy and the Avrami exponent show the effect of the structural changes on the molecular ordering during the crystallization and early morphological development. The Avrami exponent, n, determined from the analysis of the nonisothermal crystallization kinetics, indicates a reduced heterogeneous nucleation for the modified polyamides. Structural changes (branching) of the polyamides impede crystallization, as indicated by the shift of the crystallization peaks to lower temperatures.
RESUMO
Tailoring the polymer melt rheology and the chain relaxation dynamics permits easy handling of polymer processing and enables broader range of applications. Novel strategy to control the polymer melt rheology and the chain relaxation dynamics was devised. A simple process for molecular structural change in a polyamide (nylon 6) to easily generate a long-chain branching in a controllable manner without forming a network structure led to unusually large enhancements in the relaxation dynamics. The zero shear viscosity of the polyamide has increased more than 200 folds of linear chains viscosity, whereas the molar mass change was ca. 1.6 times. Storage modulus and the loss modulus at low frequency increased more than 104 and 103 times to those of neat polyamide without forming a network structure. The rheological properties of the polymer (nylon 6) melts can be finely tailored by this simple process to cover a broad range of applications.
RESUMO
Magnetorheological (MR) fluids are a type of smart material with rheological properties that may be controlled through mesostructural transformations. MR fluids form solid-like fibril structures along the magnetic field direction upon application of a magnetic field due to magnetopolarization of soft-magnetic particles when suspended in an inert medium. A reverse structural transition occurs upon removal of the applied field. The structural changes are very fast on the order of milliseconds. The rheological properties of MR fluids vary with the application of a magnetic field, resulting in non-Newtonian viscoplastic flow behaviors. Recent applications have increased the demand for MR materials with better performance and good long-term stability. A variety of industrial MR materials have been developed and tested in numerous experimental and theoretical studies. Because modeling and analysis are essential to optimize material design, a new macroscale structural model has been developed to distinguish between static yield stress and dynamic yield stress and describe the flow behavior over a wide range of shear rates. Herein, this recent progress in the search for advanced MR fluid materials with good stability is described, along with new approaches to MR flow behavior analysis. Several ways to improve the stability and efficiency of the MR fluids are also summarized.
RESUMO
STUDY DESIGN: A cost-utility analysis (CUA). OBJECTIVE: The aim of this study was to determine the cost-effectiveness of pedicle screw removal after posterior fusion in thoracolumbar burst fractures. SUMMARY OF BACKGROUND DATA: Pedicle screw instrumentation is a standard fixation method for unstable thoracolumbar burst fracture. However, removal of the pedicle screw after successful fusion remains controversial because the clinical benefits remain unclear. CUA can help clinicians make appropriate decisions about optimal health care for pedicle screw removal after successful fusion in thoracolumbar burst fractures. METHODS: We conducted a single-center, retrospective, longitudinal matched-cohort study of prospectively collected outcomes. In total, 88 consecutive patients who had undergone pedicle screw instrumentation for thoracolumbar burst fracture with successful fusion confirmed by computed tomography (CT) were used in this study. In total, 45 patients wanted to undergo implant removal surgery (R group), and 43 decided not to remove the implant (NR group). A CUA was conducted from the health care perspective. The direct costs of health care were obtained from the medical bill of each patient. Changes in health-related quality of life (HRQoL) scores, validated by Short Form 6D, were used to calculate quality-adjusted life-years (QALYs). Total costs and gained QALY were calculated at 1 year (1 year) and 2 years (2 years) compared with baseline. Results are expressed as an incremental cost-effectiveness ratio (ICER). Different discount rates (0%, 3%, and 5%) were applied to both cost and QALY for sensitivity analysis. RESULTS: Baseline patient variables were similar between the two groups (all Pâ>â0.05). The additional benefits of implant removal (0.201 QALY at 2 years) were achieved with additional costs ($2541 at 2 years), equating to an ICER of $12,641/QALY. On the basis of the different discount rates, the robustness of our study's results was also determined. CONCLUSION: Implant removal after successful fusion in a thoracolumbar burst fracture is cost-effective until postoperative year 2. LEVEL OF EVIDENCE: 3.