Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 219, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612584

RESUMO

BACKGROUND: Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS: The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS: RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION: This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.


Assuntos
Núcleo Celular , Histonas , Proteínas de Ciclo Celular , Diferenciação Celular , Cromatina , Domínio Tudor
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108384

RESUMO

Ginsenoside is the primary active substance of ginseng and has many pharmacological effects, such as anti-cancer, immune, regulating sugar and lipid metabolism, and antioxidant effects. It also protects the nervous and cardiovascular systems. This study analyzes the effects of thermal processing on the bioactivities of crude ginseng saponin. Heat treatment increased the contents of minor ginsenosides in crude saponins, such as Rg3, and heat-treated crude ginseng saponin (HGS) had better neuroprotective effects than non-treated crude saponin (NGS). HGS reduced glutamate-induced apoptosis and reactive oxygen species generation in pheochromocytoma 12 (PC12) cells, significantly more than NGS. HGS protected PC12 cells against glutamate-induced oxidative stress by upregulating Nrf2-mediated antioxidant signaling and downregulating MAPK-mediated apoptotic signaling. HGS has the potential for the prevention and treatment of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.


Assuntos
Ginsenosídeos , Fármacos Neuroprotetores , Panax , Saponinas , Ratos , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Saponinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Temperatura Alta , Antioxidantes/farmacologia
3.
Biochem Biophys Res Commun ; 572: 164-170, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34365141

RESUMO

Death domain-associated protein (DAXX) is involved in the activation of adipocyte apoptosis and is downregulated in response to a high-fat diet (HFD), which implies that the inhibition of adipocyte apoptosis may cause obesity. However, the anti-obesity effects of DAXX in diet-induced obesity (DIO) remain to be characterized. Here, we identified DAXX as an interacting partner of murine protein serine-threonine kinase 38 (MPK38). This interaction was mediated by the C-terminal (amino acids 270-643) domain of MPK38 and the N-terminal (amino acids 1-440) domain of DAXX and was increased by diverse signals that activate ASK1/TGF-ß/p53 signaling. MPK38 phosphorylated DAXX at Thr578. Wild-type DAXX, but not a DAXX T578A mutant, stimulated MPK38-dependent ASK1/TGF-ß/p53 signaling by increasing the stability of MPK38 and complex formation between MPK38 and its downstream targets, such as ASK1, Smad3, and p53. This mechanism was also shown in MEF cells that were null (-/-) for DAXX. Furthermore, the adenovirally-mediated reinstatement of DAXX expression activated MPK38 and ameliorated diet-induced defects in glucose and lipid metabolism in mice. These results indicate that DAXX limits obesity-induced metabolic abnormalities in DIO mice by activating MPK38.


Assuntos
Proteínas Correpressoras/metabolismo , Chaperonas Moleculares/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Dieta/efeitos adversos , Humanos , Camundongos , Obesidade/induzido quimicamente
4.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681581

RESUMO

As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Proteínas Quinases Ativadas por AMP/química , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Ritmo Circadiano , Citoplasma/metabolismo , Resposta ao Choque Térmico , Humanos , Carioferinas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
5.
Biochem Biophys Res Commun ; 507(1-4): 489-495, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30448175

RESUMO

Inflammation comprises an innate immune response, and is mainly induced by macrophages to protect the host from pathogens and mechanical injuries. The p38 mitogen-activated protein kinase (MAPK) pathway is a key regulator of inflammatory responses in macrophages. Here, we investigated the anti-inflammatory effects of thioredoxin-interacting protein-derived peptide (TN13) in macrophages in vitro and in vivo. Human immunodeficiency virus (HIV) trans-activator protein (TAT)-conjugated TN13 (TAT-TN13) was found to penetrate RAW 264.7 cells and decrease p38 MAPK activation in a dose-dependent manner. We also showed that TAT-TN13 could significantly inhibit lipopolysaccharide (LPS)-induced expression of macrophage activation-related receptors including CD80, CD86, and MHC II, as well as the transcriptional activation of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) in RAW 264.7 cells and primary mouse splenic macrophages. Furthermore, TAT-TN13 decreased the LPS-induced production of proinflammatory cytokines and mediators such as tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in RAW 264.7 cells and mice. These results indicate that TAT-TN13 can inhibit macrophage-derived inflammation by inhibiting p38 MAPK activity and might represent a potential novel drug for the treatment of inflammation-related diseases.


Assuntos
Inflamação/enzimologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Citocinas/sangue , Inflamação/sangue , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo
6.
J Biol Chem ; 287(25): 20797-810, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22532570

RESUMO

Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family. In this study, we show that MPK38 physically associates with p53 via the carboxyl-terminal domain of MPK38 and the central DNA-binding domain of p53. This interaction is increased by 5-fluorouracil or doxorubicin treatment and is responsible for Ser(15) phosphorylation of p53. Ectopic expression of wild-type Mpk38, but not kinase-dead Mpk38, stimulates p53-mediated transcription in a dose-dependent manner and up-regulates p53 targets, including p53, p21, MDM2, and BAX. Consistently, knockdown of MPK38 shows an opposite trend, inhibiting p53-mediated transcription. MPK38 functionally enhances p53-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by stimulating p53 nuclear translocation. We also demonstrate that MPK38-mediated p53 activation is induced by removing MDM2, a negative regulator of p53, from the p53-MDM2 complex as well as by stabilization of interaction between p53 and its positive regulators, including NM23-H1, serine/threonine kinase receptor-associated protein, and 14-3-3. This leads to the enhancement of p53 stability. Together, these results suggest that MPK38 may act as a novel regulator for promoting p53 activity through direct phosphorylation of p53 at Ser(15).


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Células HEK293 , Humanos , Camundongos , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
J Biol Chem ; 287(25): 20811-22, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544756

RESUMO

Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family, which acts as cellular energy sensors. In this study, MPK38-induced PDK1 phosphorylation was examined to elucidate the biochemical mechanisms underlying phosphorylation-dependent regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) activity. The results showed that MPK38 interacted with and inhibited PDK1 activity via Thr(354) phosphorylation. MPK38-PDK1 complex formation was mediated by the amino-terminal catalytic kinase domain of MPK38 and the pleckstrin homology domain of PDK1. This activity was dependent on insulin, a PI3K/PDK1 stimulator, as well as various apoptotic stimuli, including TNF-α, H(2)O(2), thapsigargin, and ionomycin. MPK38 inhibited PDK1 activity in a kinase-dependent manner and alleviated PDK1-mediated suppression of TGF-ß (or ASK1) signaling, probably via the phosphorylation of PDK1 at Thr(354). In addition, MPK38-mediated inhibition of PDK1 activity was accompanied by the modulation of PDK1 binding to its positive and negative regulators, serine/threonine kinase receptor-associated protein and 14-3-3, respectively. Together, these findings suggest an important role for MPK38-mediated phosphorylation of PDK1 in the negative regulation of PDK1 activity.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sequência de Bases , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Oxidantes/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Res Sq ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461562

RESUMO

Background Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication origin binding protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. Methods The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. Results RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. Conclusion This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production.

9.
J Biol Chem ; 286(36): 31123-35, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21771788

RESUMO

A zinc finger protein, ZPR9, has been identified as a physiological substrate of murine protein serine/threonine kinase 38 (MPK38), which is involved in various cellular responses, including the cell cycle, apoptosis, embryonic development, and oncogenesis. Here, ZPR9 was found to physically interact with apoptosis signal-regulating kinase 1 (ASK1) through a disulfide linkage involving Cys(1351) and Cys(1360) of ASK1 and Cys(305) and Cys(308) of ZPR9. ASK1 directly phosphorylated ZPR9 at Ser(314) and Thr(318), suggesting that ZPR9 can act as an ASK1 substrate. Ectopic expression of wild-type ZPR9, but not an S314A/T318A mutant, stimulated ASK1 kinase activity and positively regulated ASK1-mediated signaling to both JNK and p38 kinases by destabilizing complex formation between ASK1 and its negative regulators, Trx and 14-3-3, or by increasing complex formation between ASK1 and its substrate MKK3. ZPR9 functionally stimulated ASK1-induced AP-1 transcriptional activity as well as H(2)O(2)-mediated apoptosis in a phosphorylation-dependent manner. ASK1-mediated phosphorylation of ZPR9 at Ser(314) and Thr(318) was also responsible for ZPR9-induced apoptosis. Moreover, ZPR9 inhibited PDK1-mediated signaling through ASK1 activation. These results suggest that ZPR9 functions as a novel positive regulator of ASK1.


Assuntos
Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Dissulfetos , Humanos , MAP Quinase Quinase 3 , Camundongos , Fosforilação , Ligação Proteica , Transcrição Gênica , Dedos de Zinco
10.
J Biol Chem ; 286(9): 7439-56, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21148321

RESUMO

Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-ß and p53 signaling. However, the regulatory mechanism of STRAP activity is not understood. In this study, we report that B-MYB is a new STRAP-interacting protein, and that an amino-terminal DNA-binding domain and an area (amino acids 373-468) between the acidic and conserved regions of B-MYB mediate the B-MYB·STRAP interaction. Functionally, B-MYB enhances STRAP-mediated inhibition of TGF-ß signaling pathways, such as apoptosis and growth inhibition, by modulating complex formation between the TGF-ß receptor and SMAD3 or SMAD7. Furthermore, coexpression of B-MYB results in a dose-dependent increase in STRAP-mediated stimulation of p53-induced apoptosis and cell cycle arrest via direct interaction. Confocal microscopy showed that B-MYB prevents the normal translocation of SMAD3 in response to TGF-ß1 and stimulates p53 nuclear translocation. These results suggest that B-MYB acts as a positive regulator of STRAP.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Neoplasias da Mama , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Proteínas de Neoplasias/química , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Proteína Smad7/metabolismo , Transativadores/química , Transativadores/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
J Biol Chem ; 285(40): 30959-70, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20659902

RESUMO

The present study demonstrated that murine protein serine/threonine kinase 38 (MPK38) coimmunoprecipitates with Smad proteins (Smad2, -3, -4, and -7) and that this association is mediated by the catalytic kinase domain of MPK38. The association between MPK38 and Smad2, -3, and -4 was significantly increased by TGF-ß or ASK1 signals, whereas these signals decreased association of MPK38 with Smad7. MPK38 stimulated TGF-ß-induced transcription required for TGF-ß-mediated biological functions, such as apoptosis and cell growth arrest, in a kinase-dependent manner. Knockdown of endogenous MPK38 showed an opposite effect, inhibiting TGF-ß signaling. MPK38-mediated phosphorylation of Smad proteins (Ser(245) of Smad2, Ser(204) of Smad3, Ser(343) of Smad4, and Thr(96) of Smad7) was also found to be crucial to the positive regulation of TGF-ß signaling induced by MPK38. In addition, MPK38 enhanced nuclear translocation of Smad3, as well as redistribution of Smad7 from the nucleus to the cytoplasm, in response to TGF-ß. Together, these results indicate that MPK38 functions as a stimulator of TGF-ß signaling through direct interaction with and phosphorylation of Smad proteins.


Assuntos
Núcleo Celular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Células Hep G2 , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Fosforilação/fisiologia , Proteínas Smad/genética , Transcrição Gênica/fisiologia , Fator de Crescimento Transformador beta/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
J Biol Chem ; 285(4): 2397-414, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19920149

RESUMO

Cell survival and death-inducing signals are tightly associated with each other, and the decision as to whether a cell survives or dies is determined by controlling the relationship between these signals. However, the mechanism underlying the reciprocal regulation of such signals remains unclear. In this study, we reveal a functional association between PDK1 (3-phosphoinositide-dependent protein kinase 1), a critical mediator of cell survival, and ASK1 (apoptosis signal-regulating kinase 1), an apoptotic stress-activated MAPKKK. The physical association between PDK1 and ASK1 is mediated through the pleckstrin homology domain of PDK1 and the C-terminal regulatory domain of ASK1 and is decreased by ASK1-activating stimuli, such as H(2)O(2), tumor necrosis factor alpha, thapsigargin, and ionomycin, as well as insulin, a PDK1 stimulator. Wild-type PDK1, but not kinase-dead PDK1, negatively regulates ASK1 activity by phosphorylating Ser(967), a binding site for 14-3-3 protein, on ASK1. PDK1 functionally suppresses ASK1-mediated AP-1 transactivation and H(2)O(2)-mediated apoptosis in a kinase-dependent manner. On the other hand, ASK1 has been shown to inhibit PDK1 functions, including PDK1-mediated regulation of apoptosis and cell growth, by phosphorylating PDK1 at Ser(394) and Ser(398), indicating that these putative phosphorylation sites are involved in the negative regulation of PDK1 activity. These results provide evidence that PDK1 and ASK1 directly interact and phosphorylate each other and act as negative regulators of their respective kinases in resting cells.


Assuntos
Apoptose/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas 14-3-3/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/genética , Oxidantes/farmacologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/fisiologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido
13.
J Biol Chem ; 285(1): 54-70, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19880523

RESUMO

Serine-threonine kinase receptor-associated protein (STRAP) interacts with transforming growth factor beta (TGF-beta) receptors and inhibits TGF-beta signaling. Here, we identify STRAP as an interacting partner of ASK1 (apoptosis signal-regulating kinase 1). The association between ASK1 and STRAP is mediated through the C-terminal domain of ASK1 and the fourth and sixth WD40 repeats of STRAP. Using cysteine-to-serine amino acid substitution mutants of ASK1 (C1005S, C1351S, C1360S, and C1351S/C1360S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that Cys(1351) and Cys(1360) of ASK1 and Cys(152) and Cys(270) of STRAP are required for ASK1-STRAP binding. ASK1 phosphorylated STRAP at Thr(175) and Ser(179), suggesting a potential role for STRAP phosphorylation in ASK1 activity regulation. Expression of wild-type STRAP, but not STRAP mutants (C152S/C270S and T175A/S179A), inhibited ASK1-mediated signaling to both JNK and p38 kinases by stabilizing complex formation between ASK1 and its negative regulators, thioredoxin and 14-3-3, or decreasing complex formation between ASK1 and its substrate MKK3. In addition, STRAP suppressed H(2)O(2)-mediated apoptosis in a dose-dependent manner by inhibiting ASK1 activity through direct interaction. These results suggest that STRAP can act as a negative regulator of ASK1.


Assuntos
MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana , Camundongos , Proteínas de Neoplasias/química , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas de Ligação a RNA , Fator de Transcrição AP-1/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Diabetes ; 70(2): 386-399, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268463

RESUMO

Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.


Assuntos
Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Estradiol/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Teste de Tolerância a Glucose , Insulina/sangue , Lipogênese/fisiologia , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fatores Sexuais , Testosterona/sangue
15.
J Anim Sci Technol ; 63(2): 380-393, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33987612

RESUMO

This study aimed to determine the blood lipid profiles, fatty acid composition, and lipogenic enzyme activities in rat adipose tissues as affected by the Angus beef fat (ABF) and Hanwoo beef fat (HBF) containing high oleic acid (OA) content. We assigned 60 Sprague Dawley rats with a mean bodyweight of 249 ± 3.04 g to three groups (n = 20 each) to receive diets containing 7% coconut oil (CON), 7% ABF, or 7% HBF. The OA content was highest in the HBF (45.23%) followed by ABF (39.51%) and CON (6.10%). The final body weight of the HBF-fed group was significantly increased, probably due to increased feed intake, indicating the palatability of the diet. The HBF and ABF significantly increased high-density lipoprotein cholesterol (HDL-C), decreased triglyceride (TG) and total cholesterol (TC) levels, and also tended to attenuate glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in the bloodstream of the rats compared to CON. As compared to CON, lauric, myristic, and palmitic acids were significantly lower, and those of OA and α-linolenic acid (ALA) were significantly higher in the adipose tissues of HBF and ABF-fed groups. The HBF and ABF also reduced lipogenesis as induced by depleted fatty acid synthase (FAS) activity in rat adipose tissues. Nevertheless, between the two fats, HBF showed high feed intake due to its high palatability but reduced lipogenic enzyme activity, specifically that of FAS, and increased HDL-C, decreased TC and TG levels in the bloodstream, reduced saturated fatty acids (SFA), and increased oleic and ALA contents in rat adipose tissues indicating that HBF consumption does not pose significant risks of cardiovascular disease.

16.
Antioxidants (Basel) ; 10(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204667

RESUMO

Coreopsis lanceolata L. is a perennial plant of the family Asteraceae, and its flower is known to contain flavonoids with various bioactivities. We evaluated the effect of Coreopsis lanceolata L. flower (CLF) extracts on H2O2-induced oxidative stress (OS) in neuronal cells and mouse neurons. The flowering part of CL was used as CLF1 (70% ethanol extract) and CLF2 (water extract), and 10 types of phenolic compounds were quantified using high-performance liquid chromatography. To evaluate the neuroprotective effects of CLF, the antioxidant activities of the extracts were measured, and the expression levels of antioxidant enzymes and proteins related to OS-induced apoptosis in neuronal cells and mouse neurons treated with the extracts were investigated. In the in vitro study, CLF ameliorated H2O2-induced oxidative stress and induced the expression of antioxidant enzymes in PC12 cells. Furthermore, CLF1 enhanced the expression of the Bcl-xL protein but reduced the expression of Bax and the cleavage of caspase-3. In the same manner, CLF1 showed neuroprotective effects against OS in vivo. Pretreatment with CLF1 (200 mg/kg) increased the Bcl-2 protein and decreased Bax compared with the 1-methyl-4-phenylpyridinium ion (MPP+)-treated C57BL/6 mice model group. Our results suggest that the protective effects of CLF1 on MPP+-induced apoptosis may be due to its anti-apoptotic activity, through regulating the expression of the Bcl-2 family. CLF1 exerts neuroprotective effects against OS-induced apoptosis in PC12 cells in a Parkinson's disease model mouse. This effect may be attributable to the upregulation of Bcl-2 protein expression, downregulation of Bax expression, and inhibition of caspase-3 activation. These data indicate that CLF may provide therapeutic value for the treatment of progressive neurodegenerative diseases.

17.
Food Sci Nutr ; 8(7): 3617-3625, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724624

RESUMO

This study was conducted to investigate the effect of dietary oleic acid in olive oil-supplemented diets on the blood lipid profile and fatty acid composition in blood plasma and adipose tissue of rats. A total of 60 Sprague Dawley rats with mean body weight of 249 g ± 3.04 g were equally divided into three diet groups: control (CON) contained 10% coconut oil, olive50 contained 5% coconut oil and 5% olive oil, and olive100 contained 10% olive oil. Oleic acid (OA) level was highest in olive100 followed by the olive50 and control. The final body weight (BW) of the rats was significantly affected by the intake of OA, in which rats fed olive100 had the lowest final BW, which signified that OA could be associated with weight loss. Olive oil intake significantly increased levels of the high-density lipoprotein cholesterol (HDL-C) and exhibited a potential attenuation effect on the glutamic-oxaloacetic transaminase and the glutamic-pyruvic transaminase, and a potential role in the reduction of triglycerides in the bloodstream of the animals. In terms of fatty acid composition, significantly high OA was observed in the blood plasma and adipose tissues of rats fed olive100. Omega-3 polyunsaturated fatty acids (PUFAs), such as linolenic (C18:3 n-3), eicosapentaenoic (C20:5 n-3), and docosahexaenoic (C22:6 n-3), and n-6 PUFA arachidonic (C20:4 n-6) were also significantly increased in the blood plasma of rats fed olive100. These findings suggest that the intake of dietary high OA may enhance the omega-3 fatty acid levels in the blood plasma of rats and may have a positive effect in reducing risks to cardiovascular disease, as evidenced by weight loss, increased HDL-C levels, and decreased TG levels in the blood plasma of experimental animals.

18.
Nutrients ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33142995

RESUMO

Ganoderma lucidum is used widely in oriental medicine to treat obesity and metabolic diseases. Bioactive substances extracted from G. lucidum have been shown to ameliorate dyslipidemia, insulin resistance, and type 2 diabetes in mice via multiple 5' AMP-activated protein kinase (AMPK)-mediated mechanisms; however, further studies are required to elucidate the anti-obesity effects of G. lucidum in vivo. In this study, we demonstrated that 3% G. lucidum extract powder (GEP) can be used to prevent obesity and insulin resistance in a mouse model. C57BL/6 mice were provided with a normal diet (ND) or a high-fat diet (HFD) supplemented with 1, 3, or 5% GEP for 12 weeks and the effect of GEP on body weight, liver, adipose tissue, adipokines, insulin and glucose tolerance (ITT and GTT), glucose uptake, glucose-metabolism related proteins, and lipogenesis related genes was examined. GEP administration was found to reduce weight gain in the liver and fat tissues of the mice. In addition, serum parameters were significantly lower in the 3% and 5% GEP mice groups than in those fed a HFD alone, whereas adiponectin levels were significantly higher. We also observed that GEP improved glucose metabolism, reduced lipid accumulation in the liver, and reduced adipocyte size. These effects may have been mediated by enhanced AMPK activation, which attenuated the transcription and translation of lipogenic genes such as fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), and sterol regulatory element-binding protein-1c (SREBP1c). Moreover, AMP-activated protein kinase (AMPK) activation increased acetyl-CoA carboxylase (ACC), insulin receptor (IR), IR substrate 1 (IRS1), and Akt protein expression and activation, as well as glucose transporter type 1/4 (GLUT1/4) protein production, thereby improving insulin sensitivity and glucose metabolism. Together, these findings demonstrate that G. lucidum may effectively prevent obesity and suppress obesity-induced insulin resistance via AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica , Resistência à Insulina , Reishi/química , Acetil-CoA Carboxilase/metabolismo , Adiponectina/sangue , Tecido Adiposo Branco/patologia , Animais , Ativação Enzimática , Regulação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Leptina/sangue , Lipídeos/sangue , Lipogênese/genética , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
19.
Biochem J ; 416(3): 463-73, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18657049

RESUMO

SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Ativação Transcricional , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Zíper de Leucina , Camundongos , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Estrogênio/genética , Distribuição Tecidual , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
20.
Biochem J ; 413(3): 559-69, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18459945

RESUMO

SHP (small heterodimer partner; NR0B2) is an atypical orphan NR (nuclear receptor) that functions as a transcriptional co-repressor by interacting with a diverse set of NRs and transcriptional factors. HNF-6 (hepatocyte nuclear factor-6) is a key regulatory factor in pancreatic development, endocrine differentiation and the formation of the biliary tract, as well as glucose metabolism. In this study, we have investigated the function of SHP as a putative repressor of HNF-6. Using transient transfection assays, we have shown that SHP represses the transcriptional activity of HNF-6. Confocal microscopy revealed that both SHP and HNF-6 co-localize in the nuclei of cells. SHP physically interacted with HNF-6 in protein-protein association assays in vitro. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated that SHP inhibits the DNA-binding activity of HNF-6 to an HNF-6-response element consensus sequence, and the HNF-6 target region of the endogenous G6Pase (glucose 6-phosphatase) promoter respectively. Northern blot analysis of HNF-6 target genes in cells infected with adenoviral vectors for SHP and SHP siRNAs (small inhibitory RNAs) indicated that SHP represses the expression of endogenous G6Pase and PEPCK (phosphoenolpyruvate carboxykinase). Our results suggest that HNF-6 is a novel target of SHP in the regulation of gluconeogenesis.


Assuntos
Fator 6 Nuclear de Hepatócito/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Fator 6 Nuclear de Hepatócito/química , Fator 6 Nuclear de Hepatócito/genética , Humanos , Microscopia Confocal , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA