Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746287

RESUMO

Industry 4.0 corresponds to the Fourth Industrial Revolution, resulting from technological innovation and research multidisciplinary advances. Researchers aim to contribute to the digital transformation of the manufacturing ecosystem both in theory and mainly in practice by identifying the real problems that the industry faces. Researchers focus on providing practical solutions using technologies such as the Industrial Internet of Things (IoT), Artificial Intelligence (AI), and Edge Computing (EC). On the other hand, universities educate young engineers and researchers by formulating a curriculum that prepares graduates for the industrial market. This research aimed to investigate and identify the industry's current problems and needs from an educational perspective. The research methodology is based on preparing a focused questionnaire resulting from an extensive recent literature review used to interview representatives from 70 enterprises operating in 25 countries. The produced empirical data revealed (1) the kind of data and business management systems that companies have implemented to advance the digitalization of their processes, (2) the industries' main problems and what technologies (could be) implemented to address them, and (3) what are the primary industrial needs and how they can be met to facilitate their digitization. The main conclusion is that there is a need to develop a taxonomy that shall include industrial problems and their technological solutions. Moreover, the educational needs of engineers and researchers with current knowledge and advanced skills were underlined.


Assuntos
Internet das Coisas , Inteligência Artificial , Ecossistema , Indústrias , Tecnologia
2.
Materials (Basel) ; 16(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005059

RESUMO

In this investigation, an AA2519-T62 FSW butt joint was subjected to shot peening with an air pressure of p = 0.6 MPa, a processing time of t = 10 min (per side), and a steel ball diameter of dk = 1.5 mm. In order to evaluate the impact of shot peening on the low-cycle behavior, the samples were tested with coefficient R = 0.1 at total strain amplitudes of 0.35%, 0.4%, and 0.5%. The shot-peened welds are characterized by a higher value of stress amplitude, a lower value of plastic strain amplitude, and their fatigue life increased slightly. The cyclic strength coefficient and the cyclic strain hardening exponent were reduced by 45% and 55%, respectively, as the result of the surface layer hardening. The shot peening process had no noticeable effect on the character of crack initiation and propagation. Almost in all cases, the cracking started in the area under the weld face, located close to the boundary between the thermo-mechanically affected zone and the stir zone at the advancing side. Only at the heaviest loadings (εac = 0.5%) were cracks initiated in the heat-affected zone at the retreating side. Despite the introduction of small cracks in the stir zone, their presence did not affect the decohesion character of the welded joint. Overall, it was observed that there is a minimal, positive impact of shot peening on the properties of the investigated joints.

3.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208018

RESUMO

This article presents advances in the methodology of rapid various probe configurations comparison for the five-axis, tilting-head machine tools in conjunction with master artifacts. The research was performed in a direct context of automated machining of large, complex jet engine cases made from 17-4PH and 321 stainless steel materials. The aim of the study was to investigate whether all probe configurations have comparable measurement capability for use in manufacturing environment conditions. Based on the preliminary stage of the study, the T1 main straight probe achieved acceptable results of repeatability and reproducibility, lower than 10%, except for the reference diameter measurement of MT#2, where 15.4% R&R was achieved, conditionally accepted. For the straight probe configuration, error lower than 10 µm was achieved for the true position measurement and error ±10 µm for the reference diameter measurement, in relation to the vertical and horizontal head position, with the exception of the T9 and T5 MT#2 probe configuration, where higher error was noticed. The obtained results of the T5 MT#2 and T9 probes were supplemented with additional tests, which are also included. For the custom styli probes, the T4 and T6 configurations, unacceptable error, higher than 0.30 mm, was observed for the Y axis position. Depending on the shop floor and machine tool condition, variability of the results was also observed. Hence, the collected data and research helped to determine the mutual measurement errors and determine the application limitations of probes for an adaptive process flow.

4.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363142

RESUMO

Under hard operating conditions such as high load, low speed and a lack of a sufficient quantity of lubricant, the sliding pairs could suffer serious damage. One of the methods that improves the tribological performance of sliding elements in hard operating conditions is the appropriate surface creation that keeps lubricating substance in cavities. This article presents the results obtained in experimental investigations of the oil film thickness in lubricated non-conformal contact with a different surface topography of the sliding element. The tests were conducted on a ball-on-disc instrument equipped with colorimetric interferometry. Balls of diameter equaled to 19.05 mm were produced from 100 Cr6 steel. To provide hard operating conditions, the glass disc rotated at small speeds in the range of 0.1-0.2 m/s. The tests were carried out at loads of 20 N and 30 N. As a result, in most cases, the highest minimum and average oil film thickness values were obtained when the surface of steel balls was characterized by high negative asymmetry with mainly shallow cavities and some valleys of great depth compared to the height of the peaks. The modified sliding surface that had better performance comprised a comparatively small number of peaks and the curvature of the peaks were large.

5.
Sci Rep ; 12(1): 16892, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207406

RESUMO

This study aims to quantify and assess qualitatively the impact of modeling simplifications used to represent inertial and aerodynamic loads on the stresses and structural deformations of a centrifugal compressor in operation. The research object is the compressor of the high-pressure line of the DGEN 380 bypass turbine engine. Based on the virtual dynamometer WESTT CS/BV, the gas-dynamic parameters at the entrance to the centrifugal compressor and after the stage are determined. These values were used as initial parameters for numerical flow analysis. As part of the numerical strength analyses, a series of several load configurations were carried out: spin only, spin and inlet pressure normally applied on the working surface of the rotor blade, spin and outlet pressure normally applied on the working surface of the rotor blade, and one-way fluid-structure interaction analysis taking into account the aerodynamic loads with and without spinning. Based on the simulations, the level of similarity of a given load configuration with the last analysis, adopted as the reference, was determined. It was observed that in terms of the stress state, the rotational analysis taking into account the pressure on both sides of the blade gives satisfactory results, but the strain values are overestimated. The results obtained and the method of evaluation of compressor results can be used in research in the area of aviation, automotive, and refrigeration industries.

6.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683908

RESUMO

Currently, medicine uses typical industrial structure techniques, including reverse engineering, data processing, 3D-CAD modeling, 3D printing, and coordinate measurement techniques. Taking this into account, one can notice the applications of procedures used in the aviation or automotive industries based on the structure of Industry 4.0 in the planning of operations and the production of medical models with high geometric accuracy. The procedure presented in the publication shortens the processing time of tomographic data and increases the reconstruction accuracy within the hip and knee joints. The procedure allows for the partial removal of metallic artifacts from the diagnostic image. Additionally, numerical models of anatomical structures, implants, and bone cement were developed in more detail by averaging the values of local segmentation thresholds. Before the model manufacturing process, additional tests of the PLA material were conducted in terms of its strength and thermal properties. Their goal was to select the appropriate type of PLA material for manufacturing models of anatomical structures. The numerical models were divided into parts before being manufactured using the Fused Filament Fabrication technique. The use of the modifier made it possible to change the density, type of filling, number of counters, and the type of supporting structure. These treatments allowed us to reduce costs and production time and increase the accuracy of the printout. The accuracy of the manufactured model geometry was verified using the MCA-II measuring arm with the MMDx100 laser head and surface roughness using a 3D Talyscan 150 profilometer. Using the procedure, a decrease in geometric deviations and amplitude parameters of the surface roughness were noticed. The models based on the presented approach allowed for detailed and meticulous treatment planning.

7.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348835

RESUMO

An important factor having an impact on the condition of machine parts is their surface topography. For instance, in the production of a molded element in casting or injection molding processes, the surface topography of the molding cavity has a significant impact on the surface condition of the product. An analysis of the wear of a mold made with the PolyJet technique was performed in this work, and we examined the surface topography using the stylus method after casting a wax model of the turbine blade. The surface topographies showed a gradual degradation of the mold cavity surface. After the manufacture of 40 castings, there was a significant deformation of the microstructure of the mold cavity. The maximum height value (Sz) parameter had the most dynamic change from 18.980 to 27.920 µm. Its growth dynamics are mainly influenced by maximum peak height (Sp) rather than the maximum pit height (Sv) parameter. In the case of the root mean square height (Sq) and arithmetic mean height (Sa), their gradual increases can be seen from 2.578 to 3.599 µm and from 2.038 to 2.746 µm. In the case of the value of the skewness (Ssk) parameter, a small positive skew was observed. As for the kurtosis (Sku) values, the distributions are clearly leptokurtic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA