Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 81, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827578

RESUMO

BACKGROUND: Phosphonates derivatives are in the area of interests because of their unique chemical-physical features. These compounds manifest variety of biological interactions within the sensitive living cells, including impact on particular enzymes activities. Biological "cause and effect" interactions are based upon the specific matching between the structures and/or compounds and this is usually the result of proper optical configurations of particular chiral moieties. Presented research is targeted to the phosphonates with the heteroatom incorporated in their side functionalities. Such molecules are described as possible substrates of bioconversion for the first time lately and this field is not fully explored. RESULTS: Presented research is targeted to the synthesis of pure hetero-phosphonates enantiomers. The catalytic activity of yeasts and moulds were tested towards two substrates: the thienyl and imidazole phosphonates to resolve their racemic mixtures. Biotransformations conditions differed depending on the outcome, what included changing of following parameters: type of cultivation media, bioprocess duration (24-72 h), additional biocatalyst pre-treatment (24-48 h starvation step triggering the secondary metabolism). (S)-1-amino-1-(3-thienyl)methylphosphonate was produced with the assistance of R. mucilaginosa or A. niger (e.e. up to 98% and yield up to 100%), starting from the 3 mM of substrate racemic mixture. Bioconversion of racemic mixture of 3 mM of (1-amino-1-(4-imidazole)methylphosphonic acid) resulted in the synthesis of S-isomer (up to 95% of e.e.; 100% of yield) with assistance of R. mucilaginosa. 24 h biotransformation was conducted with biomass preincubated under 48-hour starvation conditions. Such stereoselective resolution of the racemic mixtures of substrates undergoes under kinetic control with the conversion of one from the enantiomers. CONCLUSIONS: Composition of the culturing media and pre-incubation in conditions of nutrient deficiency were significant factors influencing the results of kinetic resolution of racemic mixtures of phosphonic substrates and influencing the economic side of the biocatalysis e.g. by determining the duration of whole biocatalytic process.


Assuntos
Fungos/metabolismo , Organofosfonatos/metabolismo , Biocatálise , Biotransformação , Meios de Cultura , Estrutura Molecular , Estereoisomerismo
2.
Bioorg Chem ; 93: 102751, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30709702

RESUMO

Presented work describes the first approach for the biocatalytic resolution of racemic mixtures of heterophosphonate derivative. Penicillium funiculosum and Rhodotorula mucilaginosa were successfully applied for the biological conversion of racemic mixture of 1-amino-1-(3'-pyridyl)methylphosphonic acid 3. Both microorganisms carried out the kinetically driven process leading to conversion of one from the substrate enantiomers, leaving the second one unreacted. Application of R. mucilaginosa allowed obtaining pure enantiomer of the substrate (yield 100%, e.e 100% - unreacted isomer) after 24 h of biotransformation of 3 in the laboratory scale process (Method E), applying biocatalyst pre-treatment step - 24 h of starvation. In case of other biocatalyst, application of whole cells of P. funiculosum in laboratory scale process, also resulted in conversion of the racemic mixture of substrate 3via oxidative deamination into ketone derivative, which was then bioreduced (second step of the process) into 1-hydroxy-1-(3'-pyridyl)methylphosphonic acid 4. This time two products were isolated: unreacted substrate and hydroxy compound 4. Conversion degree ranged from 30% (standard procedure, method A) to even 70% (with extra addition of sodium pyruvate - method B2). However, in this case, bioconversion was not enantioselective - products: amino- and hydroxyderivative were obtained as racemic mixtures. Both biocatalysts were also tested towards the scaling so other biocatalytic procedures were introduced - with immobilized fungal mycelium. In case of Rhodotorula mucilaginosa this approach failed (data not shown) but Penicillium funiculosum turned out to be active and also selective. Thus, application of this biocatalyst in the half-preparative scale, continuous-flow bioprocess (Method C2) resulted in the obtaining of pure S-3 (100% e.e.) isomer with the 100% of conversion degree, without any side products. Recorded NMR spectra allowed confirming the reaction progress and its selectivity and also postulating possible mechanism of conversion.


Assuntos
Organofosfonatos/química , Organofosfonatos/metabolismo , Penicillium/metabolismo , Rhodotorula/metabolismo , Biotransformação , Células Imobilizadas , Estrutura Molecular
3.
Bioorg Chem ; 77: 402-410, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427855

RESUMO

Chiral hydroxyphosphonates due to their wide range of biological properties are industrially important chemicals. Chemical synthesis of their optical isomers is expensive, time consuming and not friendly to the environment, so biotransformations are under consideration. Among others, these compounds act as enzymes inhibitors. This makes the bioconversions of phosphonates, especially scaling experiments, hard to perform. Biocatalysis is one of the methods that can be applied in synthesis of optically pure compounds. To increase the efficiency of the process with whole cell biocatalysts, it is essential to ensure optimal reaction conditions that minimize cellular stress and can enhance the metabolic activity of cells. The present investigation focuses on the scaling up of the kinetic resolution of racemic mixture of 2-butyryloxy-2-(ethoxy-P-phenylphosphinyl)acetic acid, applying free and immobilized form of the fungal biocatalysts and two operation systems: shake flask and recirculated fixed-bed batch reactor. Protocols of effective mycelium immobilization on polyurethane foams were set for T. purpurogenus IAFB 2512, F. oxysporum, P. commune. The best results of biotransformation were obtained with the immobilized P. commune in the column recirculated fixed-bed batch reactor. The conversion reaches 56% (maximal for the kinetic process) and the enantiomeric enrichment of the isomers mixture ranges between 82 and 93% (93% for ester of RP,R conformation). All biocatalysts exhibit SP-preference toward tested compound, what is essential because of importance of the phosphorus atom chirality for its biological activity.


Assuntos
Fusarium/metabolismo , Organofosfonatos/metabolismo , Penicillium/metabolismo , Talaromyces/metabolismo , Biocatálise , Biotransformação , Fusarium/química , Cinética , Estrutura Molecular , Organofosfonatos/química , Organofosfonatos/isolamento & purificação , Penicillium/química , Talaromyces/química
4.
Front Chem ; 8: 589720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262971

RESUMO

Rhodotorula mucilaginosa was successfully applied as a biocatalyst for the enantioselective resolution of the racemic mixtures of heteroatom phosphonates derivatives, resulting in receiving the following enantiomers: (S)-1-amino-1(2-thienyl)methylphosphonic acid (Product 1) and (R)-1-amino-1-(3'pirydyl) methylphosphonic acid (Product 2). Biological synthesis of both products is reported for the first time. Pure (S)-1-amino-1-(2-thienyl)methylphosphonic acid (Product 1) was isolated with a conversion degree of 50% after 24 h of biotransformation was conducted on a laboratory scale under moderate conditions (1.55 mM of substrate 1, 100 mL of distilled water, 135 rpm, 25°C; Method A). The scale was enlarged to semi-preparative one, using a simplified flow-reactor (Method C; 3.10 mM of substrate 1) and immobilized biocatalyst. The product was isolated with a conversion degree of 50% just after 4 h of biotransformation. Amino-1-(3'pirydyl)methylphosphonic acid (Substrate 2) was converted according to novel procedure, by the immobilized biocatalyst - Rhodotorula mucilaginosa. The process was carried out under moderate conditions (3.19 mM - substrate 2 solution; Method C1) with the application of a simplified flow reactor system, packed with the yeasts biomass entrapped in 4% agar-agar solution. Pure (R)-amino-1-(3'pirydyl)methylphosphonic (50% of conversion degree) was received within only 48 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA