Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Dev Biol ; 489: 178-184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732224

RESUMO

The brine shrimp, Artemia franciscana, has a body plan composed of 11 thoracic segments, followed by 2 genital segments, and then 6 additional abdominal segments. Previous studies of Artemia reported that expression of the posterior-most Hox gene, Abdominal-B (Abd-B), is restricted to the genital segments and is not observed posteriorly in the abdomen at any developmental stage. This report was remarkable because it suggested that the Artemia abdomen posterior to the genital segments was a novel body region of 6 segments that bore no homology to any region in other crustaceans and was unique amongst arthropods in being a Hox-free segmented domain outside of the head. In this study, we used RT-PCR, antibody staining, and in situ hybridization on various stages of Artemia nauplii to show that Abd-B mRNA and protein are in fact expressed throughout the abdominal segments during Artemia development, but this expression later retracts to the two genital segments (G1, G2) and the T11 appendages. This suggests that Abd-B does play a role in specifying abdominal segment identity in all crustaceans that have been examined and suggests a common evolutionary origin for the crustacean abdomen.


Assuntos
Artemia , Proteínas de Homeodomínio , Abdome , Animais , Artemia/genética , Artemia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo
3.
Dev Biol ; 409(1): 297-309, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26569556

RESUMO

Hox genes play crucial roles in establishing regional identity along the anterior-posterior axis in bilaterian animals, and have been implicated in generating morphological diversity throughout evolution. Here we report the identification, expression, and initial genomic characterization of the complete set of Hox genes from the amphipod crustacean Parhyale hawaiensis. Parhyale is an emerging model system that is amenable to experimental manipulations and evolutionary comparisons among the arthropods. Our analyses indicate that the Parhyale genome contains a single copy of each canonical Hox gene with the exception of fushi tarazu, and preliminary mapping suggests that at least some of these genes are clustered together in the genome. With few exceptions, Parhyale Hox genes exhibit both temporal and spatial colinearity, and expression boundaries correlate with morphological differences between segments and their associated appendages. This work represents the most comprehensive analysis of Hox gene expression in a crustacean to date, and provides a foundation for functional studies aimed at elucidating the role of Hox genes in arthropod development and evolution.


Assuntos
Anfípodes/embriologia , Anfípodes/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genes Reporter , Genoma , Proteínas de Fluorescência Verde/metabolismo , Cabeça/embriologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Modelos Biológicos , Especificidade de Órgãos/genética , Tórax/embriologia , Tórax/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(33): 13897-902, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666530

RESUMO

Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.


Assuntos
Regulação da Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Crustáceos , Regulação para Baixo , Extremidades , Proteínas de Choque Térmico/metabolismo , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura , Modelos Genéticos , Fenótipo , Transgenes
5.
Proc Natl Acad Sci U S A ; 106(33): 13892-6, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666517

RESUMO

Crustaceans possess remarkably diverse appendages, both between segments of a single individual as well as between species. Previous studies in a wide range of crustaceans have demonstrated a correlation between the anterior expression boundary of the homeotic (Hox) gene Ultrabithorax (Ubx) and the location and number of specialized thoracic feeding appendages, called maxillipeds. Given that Hox genes regulate regional identity in organisms as diverse as mice and flies, these observations in crustaceans led to the hypothesis that Ubx expression regulates the number of maxillipeds and that evolutionary changes in Ubx expression have generated various aspects of crustacean appendage diversity. Specifically, evolutionary changes in the expression boundary of Ubx have resulted in crustacean species with either 0, 1, 2, or 3 pairs of thoracic maxillipeds. Here we test this hypothesis by altering the expression of Ubx in Parhyale hawaiensis, a crustacean that normally possesses a single pair of maxillipeds. By reducing Ubx expression, we can generate Parhyale with additional maxillipeds in a pattern reminiscent of that seen in other crustacean species, and these morphological alterations are maintained as the animals molt and mature. These results provide critical evidence supporting the proposition that changes in Ubx expression have played a role in generating crustacean appendage diversity and lend general insights into the mechanisms of morphological evolution.


Assuntos
Crustáceos/genética , Crustáceos/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Animais , Sequência de Bases , Evolução Biológica , Clonagem Molecular , Extremidades , Genes Homeobox , Técnicas Genéticas , Proteínas de Homeodomínio/genética , Hibridização In Situ , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Dados de Sequência Molecular , RNA Interferente Pequeno/metabolismo
6.
Curr Biol ; 26(1): 14-26, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26687626

RESUMO

Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms.


Assuntos
Anfípodes/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Crustáceos/embriologia , Genes Homeobox , Anfípodes/embriologia , Animais , Proteínas de Artrópodes/genética , Evolução Biológica , Diferenciação Celular/genética , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Crustáceos/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Masculino , Mutagênese , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA