Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575869

RESUMO

Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.


Assuntos
Análise Mutacional de DNA , Deficiência do Fator V/genética , Deficiência do Fator V/terapia , Fator V/genética , Adolescente , Coagulação Sanguínea , Transtornos Herdados da Coagulação Sanguínea/genética , Testes de Coagulação Sanguínea , Plaquetas/metabolismo , Pré-Escolar , Códon sem Sentido , DNA Complementar/metabolismo , Saúde da Família , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Paquistão , Proteínas Recombinantes/química , Análise de Sequência de DNA , Espanha
2.
Biomed Pharmacother ; 142: 112059, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467894

RESUMO

Deficiency of factor V is a congenital autosomal recessive coagulopathy associated with mutations in the F5 gene that results in mild-to-severe bleeding episodes. Factor V is a component of the prothrombinase complex responsible for accelerating conversion of prothrombin to thrombin. At the present time there are no therapeutic factor V concentrates available. This study was designed to lay the preliminary foundations for future cell-based therapy for patients with severe factor V deficiency. The study showed that hepatospheres, which produce coagulation factors VIII, IX, and V, synthetize and store intracellular glycogen and express albumin levels up to 8 times higher than those of undifferentiated cells. Factor IX and factor V gene expression increased significantly in hepatospheres as compared to undifferentiated cells, whereas factor VIII gene expression remained constant. The factor V protein was detected in the hepatospheres´ secretome. Considering the enormous potential of mesenchymal stem cells as therapeutic agents, this study proposes a highly reproducible method to induce differentiation of mesenchymal stem cells from human placenta to factor V-producing hepatospheres. This strategy constitutes a preliminary step towards a curative treatment of factor V deficiency through advanced therapies such as cell therapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Decídua/citologia , Deficiência do Fator V/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Albuminas/genética , Albuminas/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Fator IX/genética , Fator IX/metabolismo , Fator V/genética , Fator V/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Secretoma/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
3.
Thromb Haemost ; 118(8): 1370-1381, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29991091

RESUMO

The development of new strategies based on cell therapy approaches to correct haemophilia A (HA) requires further insights into new cell populations capable of producing coagulation factor VIII (FVIII) and presenting stable engraftment potential. The major producers of FVIII in the adult are liver sinusoidal endothelial cells (LSECs) and in a lesser degree bone marrow-derived cells, both of which have been shown to ameliorate the bleeding phenotype in adult HA mice after transplantation. We have previously shown that cells from the foetal liver (FL) and the aorta-gonads-mesonephros (AGM) haematopoietic locations possess higher LSEC engraftment potential in newborn mice compared with adult-derived LSECs, constituting likely therapeutic targets for the treatment of HA in neonates. However, less is known about the production of FVIII in embryonic locations. Quantitative polymerase chain reaction and Western blot analysis were performed to assess the relative level of FVIII production in different embryonic tissues and at various developmental stages, identifying the FL and AGM region from day 12 (E12) as prominent sources of FVIII. Furthermore, FL-derived VE-cad+CD45-Lyve1+/- endothelial/endothelial progenitor cells, presenting vascular engraftment potential, produced high levels of F8 ribonucleic acid compared with CD45+ blood progenitors or Dlk1+ hepatoblasts. In addition, we show that the E11 AGM explant cultures expanded cells with LSEC repopulation activity, instrumental to further understand signals for in vitro generation of LSECs. Taking into account the capacity for FVIII expression, culture expansion and newborn engraftment potential, these results support the use of cells with foetal characteristics for correction of FVIII deficiency in young individuals.


Assuntos
Aorta/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator VIII/metabolismo , Gônadas/metabolismo , Hemofilia A/metabolismo , Fígado/metabolismo , Mesonefro/metabolismo , Animais , Aorta/embriologia , Aorta/transplante , Diferenciação Celular , Células Progenitoras Endoteliais/transplante , Fator VIII/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Gônadas/embriologia , Gônadas/transplante , Hemofilia A/genética , Hemofilia A/cirurgia , Fígado/embriologia , Mesonefro/embriologia , Mesonefro/transplante , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA