RESUMO
Optical microscopy techniques have emerged as a cornerstone of biomedical research, capable of probing the cellular functions of a vast range of substrates, whilst being minimally invasive to the cells or tissues of interest. Incorporating biological imaging into the early stages of the drug discovery process can provide invaluable information about drug activity within complex disease models. Spontaneous Raman spectroscopy has been widely used as a platform for the study of cells and their components based on chemical composition; but slow acquisition rates, poor resolution and a lack of sensitivity have hampered further development. A new generation of stimulated Raman techniques is emerging which allows the imaging of cells, tissues and organisms at faster acquisition speeds, and with greater resolution and sensitivity than previously possible. This review focuses on the development of stimulated Raman scattering (SRS), and covers the use of bioorthogonal tags to enhance sample detection, and recent applications of both spontaneous Raman and SRS as novel imaging platforms to facilitate the drug discovery process.
Assuntos
Descoberta de Drogas , Microscopia/métodos , Análise Espectral Raman/métodosRESUMO
Loss of E-cadherin-mediated cell-cell junctions has been correlated with cancer cell invasion and poor patient survival. p120-catenin has emerged as a key player in promoting E-cadherin stability and adherens junction integrity and has been proposed as a potential invasion suppressor by preventing release of cells from the constraints imposed by cadherin-mediated cell-cell adhesion. However, it has been proposed that tyrosine phosphorylation of p120 may contribute to cadherin-dependent junction disassembly during invasion. Here, we use small interfering RNA (siRNA) in A431 cells to show that knockdown of p120 promotes two-dimensional migration of cells. In contrast, p120 knockdown impairs epidermal growth factor-induced A431 invasion into three-dimensional matrix gels or in organotypic culture, whereas re-expression of siRNA-resistant p120, or a p120 isoform that cannot be phosphorylated on tyrosine, restores the collective mode of invasion employed by A431 cells in vitro. Thus, p120 promotes A431 cell invasion in a phosphorylation-independent manner. We show that the collective invasion of A431 cells depends on the presence of cadherin-mediated (P- and E-cadherin) cell-cell contacts, which are lost in cells where p120 expression is knocked down. Furthermore, membranous p120 is maintained in invasive squamous cell carcinomas in tumours suggesting that p120 may be important for the collective invasion of tumours cells in vivo.
Assuntos
Carcinoma de Células Escamosas/patologia , Moléculas de Adesão Celular/fisiologia , Invasividade Neoplásica , Fosfoproteínas/fisiologia , Sequência de Bases , Cateninas , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Fator de Crescimento Epidérmico/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , RNA Interferente Pequeno , Proteínas Recombinantes/metabolismo , Tirosina/metabolismo , delta CateninaRESUMO
Focal adhesion kinase (FAK) is considered intimately involved in cancer progression. Our previous research has demonstrated that overexpression of FAK is an early and frequent event in squamous cell carcinomas of the supraglottic larynx, and it is associated with the presence of metastases in cervical lymph nodes. The purpose of this study was to examine the functional role of FAK in the progression of head and neck squamous cell carcinomas (HNSCC). To this end, expression of FAK-related nonkinase (FRNK) or small interfering RNA (siRNA) against FAK was used to disrupt the FAK-induced signal transduction pathways in the HNSCC-derived SCC40 and SCC38 cell lines. Similar phenotypic effects were observed with the two methodological approaches in both cell lines. Decreased cell attachment, motility and invasion were induced by FRNK and FAK siRNA, whereas cell proliferation was not impaired. In addition, increased cell invasion was observed upon FAK overexpression in SCC cells. FRNK expression resulted in a downregulation of MMP-2 and MMP-9 expression. Interestingly, MMP-2 overexpression in FRNK-expressing cells rescued FRNK inhibition of cell invasion. This is the first demonstration of a direct rescue of impaired cell invasion by the re-expression of MMP-2 in a tumour cell type with decreased expression of functional FAK. Collectively, these data reported here support the conclusion that FAK enhances invasion of HNSCC by promoting both increased cell motility and MMP-2 production, thus providing new insights into possible therapeutic intervention strategies.