Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(2): 522-536.e19, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997977

RESUMO

Working memory is a form of short-term memory that involves maintaining and updating task-relevant information toward goal-directed pursuits. Classical models posit persistent activity in prefrontal cortex (PFC) as a primary neural correlate, but emerging views suggest additional mechanisms may exist. We screened ∼200 genetically diverse mice on a working memory task and identified a genetic locus on chromosome 5 that contributes to a substantial proportion (17%) of the phenotypic variance. Within the locus, we identified a gene encoding an orphan G-protein-coupled receptor, Gpr12, which is sufficient to drive substantial and bidirectional changes in working memory. Molecular, cellular, and imaging studies revealed that Gpr12 enables high thalamus-PFC synchrony to support memory maintenance and choice accuracy. These findings identify an orphan receptor as a potent modifier of short-term memory and supplement classical PFC-based models with an emerging thalamus-centric framework for the mechanistic understanding of working memory.


Assuntos
Memória de Curto Prazo/fisiologia , Receptores Acoplados a Proteínas G/genética , Tálamo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
2.
Genes Dev ; 35(9-10): 771-781, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33832988

RESUMO

MicroRNAs (miRNAs) are short, noncoding RNAs that associate with Argonaute (AGO) to influence mRNA stability and translation, thereby regulating cellular determination and phenotype. While several individual miRNAs have been shown to control adipocyte function, including energy storage in white fat and energy dissipation in brown fat, a comprehensive analysis of miRNA activity in these tissues has not been performed. We used high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to comprehensively characterize the network of high-confidence, in vivo mRNA:miRNA interactions across white and brown fat, revealing >20,000 unique AGO binding sites. When coupled with miRNA and mRNA sequencing, we found an inverse correlation between depot-enriched miRNAs and their targets. To illustrate the functionality of our HITS-CLIP data set in identifying specific miRNA:mRNA interactions, we show that miR-29 is a novel regulator of leptin, an adipocyte-derived hormone that coordinates food intake and energy homeostasis. Two independent miR-29 binding sites in the leptin 3' UTR were validated using luciferase assays, and miR-29 gain and loss of function modulated leptin mRNA and protein secretion in primary adipocytes. This work represents the only experimentally generated miRNA targetome in adipose tissue and identifies multiple regulatory pathways that may specify the unique identities of white and brown fat.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteínas Argonautas/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Sítios de Ligação/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
3.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512964

RESUMO

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Adolescente , Humanos , Adulto Jovem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757889

RESUMO

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas/genética
5.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929643

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Neoplasias da Mama/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo
6.
Genomics ; 116(2): 110805, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309446

RESUMO

The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements. However, our understanding of these adaptations at the cellular and molecular levels remains limited. In a validated murine model, we leverage single-cell transcriptomics to determine how VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize additional rescue-independent changes brought about by VSG. We show that Paneth cells have increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, our study provides unprecedented molecular resolution of VSG's therapeutic effects on the gut epithelium.


Assuntos
Gastrectomia , Obesidade , Camundongos , Humanos , Animais , Gastrectomia/métodos , Mucosa Intestinal/metabolismo , Dieta Hiperlipídica/efeitos adversos
7.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884859

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Humanos , Animais , Camundongos , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo
8.
J Hepatol ; 78(1): 165-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089156

RESUMO

BACKGROUND & AIMS: Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS: Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS: In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS: A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS: Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.


Assuntos
Sistema Biliar , Hiperplasia Nodular Focal do Fígado , Adulto , Humanos , Camundongos , Animais , Camundongos SCID , Regeneração Hepática , Hepatócitos , Fígado/lesões , Diferenciação Celular
9.
Nucleic Acids Res ; 49(2): 726-744, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33406262

RESUMO

The establishment of the small intestinal (SI) lineage during human embryogenesis ensures functional integrity of the intestine after birth. The chromatin dynamics that drive SI lineage formation and regional patterning in humans are essentially unknown. To fill this knowledge void, we apply a cutting-edge genomic technology to a state-of-the-art human model of early SI development. Specifically, we leverage chromatin run-on sequencing (ChRO-seq) to define the landscape of active promoters, enhancers and gene bodies across distinct stages of directed differentiation of human pluripotent stem cells into SI spheroids with regional specification. Through comprehensive ChRO-seq analysis we identify candidate stage-specific chromatin activity states, novel markers and enhancer hotspots during the directed differentiation. Moreover, we propose a detailed transcriptional network associated with SI lineage formation or regional patterning. Our ChRO-seq analyses uncover a previously undescribed pattern of enhancer activity and transcription at HOX gene loci underlying SI regional patterning. We also validated this unique HOX dynamics by the analysis of single cell RNA-seq data from human fetal SI. Overall, the results lead to a new proposed working model for the regulatory underpinnings of human SI development, thereby adding a novel dimension to the literature that has relied almost exclusively on non-human models.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Intestino Delgado/embriologia , Modelos Biológicos , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Elementos Facilitadores Genéticos , Genes Homeobox , Células-Tronco Embrionárias Humanas/citologia , Humanos , Intestino Delgado/metabolismo , Camundongos , Organoides , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Transcrição Gênica
10.
J Mammary Gland Biol Neoplasia ; 27(3-4): 253-269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190643

RESUMO

Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.


Assuntos
MicroRNAs , Animais , Bovinos , Cães , Feminino , Humanos , Ratos , Mama/metabolismo , Células Epiteliais/metabolismo , Cavalos/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA , Suínos
11.
BMC Genomics ; 23(1): 792, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457077

RESUMO

Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Animais , Camundongos , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Genótipo , MicroRNAs/genética , Organoides
12.
Arch Toxicol ; 96(6): 1685-1699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314868

RESUMO

Arsenic is a pervasive environmental toxin that is listed as the top priority for investigation by the Agency for Toxic Substance and Disease Registry. While chronic exposure to arsenic is associated with type 2 diabetes (T2D), the underlying mechanisms are largely unknown. We have recently demonstrated that arsenic treatment of INS-1 832/13 pancreatic beta cells impairs glucose-stimulated insulin secretion (GSIS), a T2D hallmark. We have also shown that arsenic alters the microRNA profile of beta cells. MicroRNAs have a well-established post-transcriptional regulatory role in both normal beta cell function and T2D pathogenesis. We hypothesized that there are microRNA master regulators that shape beta cell gene expression in pathways pertinent to GSIS after exposure to arsenicals. To test this hypothesis, we first treated INS-1 832/13 beta cells with either inorganic arsenic (iAsIII) or monomethylarsenite (MAsIII) and confirmed GSIS impairment. We then performed multi-omic analysis using chromatin run-on sequencing, RNA-sequencing, and small RNA-sequencing to define profiles of transcription, gene expression, and microRNAs, respectively. Integrating across these data sets, we first showed that genes downregulated by iAsIII treatment are enriched in insulin secretion and T2D pathways, whereas genes downregulated by MAsIII treatment are enriched in cell cycle and critical beta cell maintenance factors. We also defined the genes that are subject primarily to post-transcriptional control in response to arsenicals and demonstrated that miR-29a is the top candidate master regulator of these genes. Our results highlight the importance of microRNAs in arsenical-induced beta cell dysfunction and reveal both shared and unique mechanisms between iAsIII and MAsIII.


Assuntos
Arsênio , Arsenicais , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , MicroRNAs , Arsênio/metabolismo , Arsênio/toxicidade , Arsenicais/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Am J Physiol Endocrinol Metab ; 321(1): E11-E23, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33998293

RESUMO

Nearly 80% of patients that receive bariatric surgery are women, yet mechanistic preclinical studies have focused on males. The goal of this study was to determine the metabolic impact of diet- and surgery-induced weight loss in males, females, and ovariectomized females. All mice were fed a 60% high-fat diet (HFD) before undergoing either vertical sleeve gastrectomy (VSG) or sham surgery. Mice either remained on an HFD or were switched to a standard chow diet postsurgically. When maintained on an HFD, males and females decreased fat mass and improved oral glucose tolerance after VSG. After dietary intervention, additional adiposity was lost in both surgical groups. Ovariectomized females showed a blunted decrease in fat mass on an HFD, but lost significant adiposity after dietary intervention. Energy expenditure was impacted by dietary and not surgical intervention across all groups. Males decreased hepatic triglyceride levels after VSG, which was further decreased after dietary intervention. Intact and ovariectomized females had a blunted decrease in hepatic triglycerides after VSG, but a significant decrease after dietary intervention. The more pronounced effect of VSG on hepatic lipids in males is strongly associated with changes in hepatic expression of genes and microRNAs previously linked to hepatic lipid regulation and systemic energy homeostasis. These data highlight the importance of postsurgical diet on metabolic outcomes across sexes. Furthermore, these data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.NEW & NOTEWORTHY These data highlight the interaction of postsurgical diet after bariatric surgery on metabolic outcomes across sexes. These data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.


Assuntos
Dieta com Restrição de Gorduras , Gastrectomia , Redução de Peso , Animais , Glicemia/análise , Índice de Massa Corporal , Peso Corporal , Dieta , Metabolismo Energético , Feminino , Lipídeos/análise , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/análise , Obesidade/dietoterapia , Obesidade/cirurgia , Ovariectomia , Fatores Sexuais , Triglicerídeos/análise
14.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643097

RESUMO

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , MicroRNAs/genética , Transcriptoma , Animais , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Biologia Computacional , Cães , Feminino , Citometria de Fluxo , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Organoides , RNA-Seq , Análise de Célula Única
15.
J Lipid Res ; 60(4): 805-818, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723097

RESUMO

Dyslipidemia and insulin resistance are significant adverse outcomes of consuming high-sugar diets. Conversely, dietary fish oil (FO) reduces plasma lipids. Diet-induced dyslipidemia in a rhesus model better approximates the pathophysiology of human metabolic syndrome (MetS) than rodent models. Here, we investigated relationships between metabolic parameters and hypertriglyceridemia in rhesus macaques consuming a high-fructose diet (n = 59) and determined the effects of FO supplementation or RNA interference (RNAi) on plasma ApoC3 and triglyceride (TG) concentrations. Fructose supplementation increased body weight, fasting insulin, leptin, TGs, and large VLDL particles and reduced adiponectin concentrations (all P < 0.001). In multiple regression analyses, increased plasma ApoC3 was the most consistent and significant variable related to diet-induced hypertriglyceridemia. FO supplementation, which attenuated increases of plasma TG and ApoC3 concentrations, reversed fructose-induced shifts of lipoprotein particle size toward IDL and VLDL, a likely mechanism contributing to beneficial metabolic effects, and reduced hepatic expression of genes regulated by the SREBP pathway, particularly acetyl-CoA carboxylase. Furthermore, RNAi-mediated ApoC3 inhibition lowered plasma TG concentrations in animals with diet-induced hypertriglyceridemia. In summary, ApoC3 is an important independent correlate of TG-rich lipoprotein concentrations in rhesus macaques consuming a high-fructose diet. ApoC3 is a promising therapeutic target for hypertriglyceridemia in patients with MetS and diabetes.


Assuntos
Apolipoproteína C-III/metabolismo , Óleos de Peixe/farmacologia , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Interferência de RNA , Animais , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Frutose , Hipertrigliceridemia/induzido quimicamente , Macaca mulatta , Masculino
16.
Physiol Genomics ; 51(8): 379-389, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251698

RESUMO

MicroRNAs (miRNAs) are important posttranscriptional regulators of metabolism and energy homeostasis. Dysregulation of certain miRNAs in the liver has been shown to contribute to the pathogenesis of Type 2 diabetes (T2D), in part by impairing hepatic insulin sensitivity. By small RNA-sequencing analysis, we identified seven hepatic miRNAs (including miR-29b) that are consistently aberrantly expressed across five different rodent models of metabolic dysfunction that share the feature of insulin resistance (IR). We also showed that hepatic miR-29b exhibits persistent dysregulation during disease progression in a rat model of diabetes, UCD-T2DM. Furthermore, we observed that hepatic levels of miR-29 family members are attenuated by interventions known to improve IR in rodent and rhesus macaque models. To examine the function of the miR-29 family in modulating insulin sensitivity, we used locked nucleic acid (LNA) technology and demonstrated that acute in vivo suppression of the miR-29 family in adult mice leads to significant reduction of fasting blood glucose (in both chow-fed lean and high-fat diet-fed obese mice) and improvement in insulin sensitivity (in chow-fed lean mice). We carried out whole transcriptome studies and uncovered candidate mechanisms, including regulation of DNA methyltransferase 3a (Dnmt3a) and the hormone-encoding gene Energy homeostasis associated (Enho). In sum, we showed that IR/T2D is linked to dysregulation of hepatic miR-29b across numerous models and that acute suppression of the miR-29 family in adult mice leads to improved glycemic control. Future studies should investigate the therapeutic utility of miR-29 suppression in different metabolic disease states.Enho; insulin resistance; liver; microRNA-29 (miR-29); UCD-T2DM.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Fígado/metabolismo , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Animais , Sequência de Bases/genética , Glicemia/efeitos dos fármacos , DNA Metiltransferase 3A , Células HEK293 , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , MicroRNAs/genética , Oligonucleotídeos/administração & dosagem , Ratos , Ratos Zucker
17.
Physiol Genomics ; 51(2): 59-71, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633643

RESUMO

Trimethylamine-N-oxide (TMAO), a microbial choline metabolism byproduct that is processed in the liver and excreted into circulation, is associated with increased atherosclerotic lesion formation and cardiovascular disease risk. Genetic regulators of TMAO levels are largely unknown. In the present study, we used 288 mice from a genetically heterogeneous mouse population [Diversity Outbred (DO)] to determine hepatic microRNA associations with TMAO in the context of an atherogenic diet. We also validated findings in two additional animal models of atherosclerosis: liver-specific insulin receptor knockout mice fed a chow diet (LIRKO) and African green monkeys fed high-fat/high-cholesterol diet. Small RNA-sequencing analysis in DO mice, LIRKO mice, and African green monkeys identified only one hepatic microRNA (miR-146a-5p) that is aberrantly expressed across all three models. Moreover, miR-146a-5p levels are associated with circulating TMAO after atherogenic diet in each of these models. We also performed high-resolution genetic mapping and identified a novel quantitative trait locus on Chromosome 12 for TMAO levels. This interval includes two genes, Numb and Dlst, which are inversely correlated with both miR-146a and TMAO and are predicted targets of miR-146a. Both of these genes have been validated as direct targets of miR-146a, though in other cellular contexts. This is the first report to our knowledge of a link between miR-146 and TMAO. Our findings suggest that miR-146-5p, as well as one or more genes at the Chromosome 12 QTL (possibly Numb or Dlst), is strongly linked to TMAO levels and likely involved in the control of atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Metilaminas/metabolismo , MicroRNAs/genética , Animais , Chlorocebus aethiops , Colina/metabolismo , Estudos de Coortes , Camundongos de Cruzamento Colaborativo , Dieta Aterogênica , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Fígado/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA-Seq , Receptor de Insulina/genética , Fatores de Risco
18.
Arch Toxicol ; 93(11): 3099-3109, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31555879

RESUMO

Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.


Assuntos
Arsenitos/toxicidade , Cádmio/toxicidade , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Manganês/toxicidade , MicroRNAs/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proinsulina/genética , Ratos , Regulação para Cima
19.
Nucleic Acids Res ; 45(8): 4743-4755, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28082397

RESUMO

In addition to suppressing cellular gene expression, certain miRNAs potently facilitate replication of specific positive-strand RNA viruses. miR-122, a pro-viral hepatitis C virus (HCV) host factor, binds and recruits Ago2 to tandem sites (S1 and S2) near the 5΄ end of the HCV genome, stabilizing it and promoting its synthesis. HCV target site selection follows canonical miRNA rules, but how non-templated 3΄ miR-122 modifications impact this unconventional miRNA action is unknown. High-throughput sequencing revealed that a 22 nt miRNA with 3΄G ('22-3΄G') comprised <63% of total miR-122 in human liver, whereas other variants (23-3΄A, 23-3΄U, 21-3΄U) represented 11-17%. All loaded equivalently into Ago2, and when tested individually functioned comparably in suppressing gene expression. In contrast, 23-3΄A and 23-3΄U were more active than 22-3΄G in stabilizing HCV RNA and promoting its replication, whereas 21-3΄U was almost completely inactive. This lack of 21-3΄U HCV host factor activity correlated with reduced recruitment of Ago2 to the HCV S1 site. Additional experiments demonstrated strong preference for guanosine at nt 22 of miR-122. Our findings reveal the importance of non-templated 3΄ miR-122 modifications to its HCV host factor activity, and identify unexpected differences in miRNA requirements for host gene suppression versus RNA virus replication.


Assuntos
Proteínas Argonautas/genética , Hepacivirus/genética , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Proteínas Argonautas/biossíntese , Sítios de Ligação , Regulação da Expressão Gênica/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Humanos , Fígado/metabolismo , Fígado/virologia , RNA Viral/genética , Replicação Viral/genética
20.
J Biol Chem ; 292(7): 2586-2600, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28053090

RESUMO

Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.


Assuntos
Mucosa Intestinal/metabolismo , Células-Tronco/microbiologia , Transcriptoma , Animais , Feminino , Vida Livre de Germes , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA