Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 59(6): 1202-1216, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37737069

RESUMO

Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.


Assuntos
Diatomáceas , Diatomáceas/genética , Ecossistema , Fitoplâncton/genética , Biomassa , Cadeia Alimentar
2.
Harmful Algae ; 86: 55-63, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358277

RESUMO

The diatom genus Pseudo-nitzschia is a common component of phytoplankton communities in the Gulf of Mexico and is potentially toxic as some species produce the potent neurotoxin domoic acid. The impact of oil and chemical dispersants on Pseudo-nitzschia spp. and domoic acid production have not yet been studied; preliminary findings from a mesocosm experiment suggest this genus may be particularly resilient. A toxicological study was conducted using a colony of Pseudo-nitzschia sp. isolated from a station off the coast of Louisiana in the Gulf of Mexico. The cultures were exposed to a water accommodated fraction (WAF) of oil and a diluted chemically enhanced WAF (DCEWAF) which was a mix of oil and dispersant (20:1). Exposure to WAF induced a lag phase but did not inhibit growth rates once in exponential growth. Cultures grown in DCEWAF did not experience a lag phase but had significantly lower growth rates than the Control and WAF cultures. The cellular quota of domoic acid was higher in cultures treated with DCEWAF and WAF relative to their control values, and half of the domoic acid had leaked out of the cells into the surrounding seawater in the DCEWAF cultures while all the domoic acid remained inside the cells in WAF-treated cultures. These results suggest that the presence of oil could lead to toxic blooms, but that the application of dispersant could decrease bioaccumulation of domoic acid through the food web.


Assuntos
Diatomáceas , Ácido Caínico , Golfo do México , Ácido Caínico/análogos & derivados , Fitoplâncton
3.
Aquat Toxicol ; 206: 43-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30448744

RESUMO

During the 2010 Deepwater Horizon oil spill, the chemical dispersant Corexit was applied over vast areas of the Gulf of Mexico. Marine phytoplankton play a key role in aggregate formation through the production of extracellular polymeric materials (EPS), an important step in the biological carbon pump. This study examined the impacts of oil and dispersants on the composition and physiology of natural marine phytoplankton communities from the Gulf of Mexico during a 72-hour mesocosm experiment and consequences to carbon export. The communities were treated using the water accommodated fraction (WAF) of oil, which was produced by adding Macondo surrogate oil to natural seawater and mixed for 24 h in the dark. A chemically enhanced WAF (CEWAF) was made in a similar manner, but using a mixture of oil and the dispersant Corexit in a 20:1 ratio as well as a diluted CEWAF (DCEWAF). Phytoplankton communities exposed to WAF showed no significant changes in PSII quantum yield (Fv/Fm) or electron transfer rates (ETRmax) compared to Control communities. In contrast, both Fv/Fm and ETRmax declined rapidly in communities treated with either CEWAF or DCEWAF. Analysis of other photophysiological parameters showed that photosystem II (PSII) antenna size and PSII connectivity factor were not altered by exposure to DCEWAF, suggesting that processes downstream of PSII were affected. The eukaryote community composition in each experimental tank was characterized at the end of the 72 h exposure time using 18S rRNA sequencing. Diatoms dominated the communities in both the control and WAF treatments (52 and 56% relative abundance respectively), while in CEWAF and DCEWAF treatments were dominated by heterotrophic Euglenozoa (51 and 84% respectively). Diatoms made up the largest relative contribution to the autotrophic eukaryote community in all treatments. EPS concentration was four times higher in CEWAF tanks compared to other treatments. Changes in particle size distributions (a proxy for aggregates) over time indicated that a higher degree of particle aggregation occurred in both the CEWAF and DCEWAF treatments than the WAF or Controls. Our results demonstrate that chemically dispersed oil has more negative impacts on photophysiology, phytoplankton community structure and aggregation dynamics than oil alone, with potential implications for export processes that affect the distribution and turnover of carbon and oil in the water column.


Assuntos
Lipídeos/toxicidade , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Diatomáceas/efeitos dos fármacos , Golfo do México , Poluição por Petróleo/análise , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA