Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 477(9): 1733-1744, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32329788

RESUMO

Post-translational modifications provide suitable mechanisms for cellular adaptation to environmental changes. Lysine acetylation is one of these modifications and occurs with the addition of an acetyl group to Nε-amino chain of this residue, eliminating its positive charge. Recently, we found distinct acetylation profiles of procyclic and bloodstream forms of Trypanosoma brucei, the agent of African Trypanosomiasis. Interestingly, glycolytic enzymes were more acetylated in the procyclic, which develops in insects and uses oxidative phosphorylation to obtain energy, compared with the bloodstream form, whose main source of energy is glycolysis. Here, we investigated whether acetylation regulates the T. brucei fructose 1,6-bisphosphate aldolase. We found that aldolase activity was reduced in procyclic parasites cultivated in the absence of glucose and partial recovered by in vitro deacetylation. Similarly, acetylation of protein extracts from procyclics cultivated in glucose-rich medium, caused a reduction in the aldolase activity. In addition, aldolase acetylation levels were higher in procyclics cultivated in the absence of glucose compared with those cultivated in the presence of glucose. To further confirm the role of acetylation, lysine residues near the catalytic site were substituted by glutamine in recombinant T. brucei aldolase. These replacements, especially K157, inhibited enzymatic activity, changed the electrostatic surface potential, decrease substrate binding and modify the catalytic pocket structure of the enzyme, as predicted by in silico analysis. Taken together, these data confirm the role of acetylation in regulating the activity of an enzyme from the glycolytic pathway of T. brucei, expanding the factors responsible for regulating important pathways in this parasite.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Glicólise/fisiologia , Lisina/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetilação , Animais , Microcorpos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
2.
Biochimie ; 191: 11-26, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34375717

RESUMO

The RVB proteins, composed of the conservative paralogs, RVB1 and RVB2, belong to the AAA+ (ATPases Associated with various cellular Activities) protein superfamily and are present in archaea and eukaryotes. The most distinct structural features are their ability to interact with each other forming the RVB1/2 complex and their participation in several macromolecular protein complexes leading them to be involved in many biological processes. We report here the biochemical and biophysical characterization of the Neurospora crassa RVB-1/RVB-2 complex. Chromatographic analyses revealed that the complex (APO) predominantly exists as a dimer in solution although hexamers were also observed. Nucleotides influence the oligomerization state, while ATP favors hexamers formation, ADP favors the formation of multimeric states, likely dodecamers, and the Molecular Dynamics (MD) simulations revealed the contribution of certain amino acid residues in the nucleotide stabilization. The complex binds to dsDNA fragments and exhibits ATPase activity, which is strongly enhanced in the presence of DNA. In addition, both GFP-fused proteins are predominantly nuclear, and their nuclear localization signals (NLS) interact with importin-α (NcIMPα). Our findings show that some properties are specific of the fungus proteins despite of their high identity to orthologous proteins. They are essential proteins in N. crassa, and the phenotypic defects exhibited by the heterokaryotic strains, mainly related to growth and development, indicate N. crassa as a promising organism to investigate additional biological and structural aspects of these proteins.


Assuntos
DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multienzimáticos/metabolismo , Neurospora crassa/enzimologia , Multimerização Proteica , DNA Fúngico/genética , Proteínas Fúngicas/genética , Complexos Multienzimáticos/genética , Neurospora crassa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA