Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597203

RESUMO

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Assuntos
Fragaria , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fenótipo , Cromatografia Gasosa-Espectrometria de Massas
2.
J Exp Bot ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938160

RESUMO

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

3.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004617

RESUMO

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Variação Genética , Proteínas de Plantas/metabolismo , Alelos , Diploide , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Biotechnol J ; 18(4): 929-943, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31533196

RESUMO

FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.


Assuntos
Fragaria/genética , Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Teorema de Bayes , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Metaboloma , Plantas Geneticamente Modificadas
5.
New Phytol ; 208(2): 482-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26010039

RESUMO

The receptacle of the strawberry (Fragaria × ananassa) fruit accounts for the main properties of the ripe fruit for human consumption. As it ripens, it undergoes changes similar to other fruits in sugar : acid ratio, volatile production and cell wall softening. However, the main regulators of this process have not yet been reported. The white stage marks the initiation of the ripening process, and we had previously reported a peak of expression for a FaGAMYB gene. Transient silencing of FaGAMYB using RNAi and further determination of changes in global gene expression by RNAseq, and composition of primary and secondary metabolites have been used to investigate the role played by this gene during the development of the receptacle. Down-regulation of FaGAMYB caused an arrest in the ripening of the receptacle and inhibited colour formation. Consistent with this, several transcription factors associated with the regulation of flavonoid biosynthetic pathway showed altered expression. FaGAMYB silencing also caused a reduction of ABA biosynthesis and sucrose content. Interestingly, exogenous ABA application to the RNAI-transformed receptacle reversed most defects caused by FaGAMYB down-regulation. The study assigns a key regulatory role to FaGAMYB in the initiation of strawberry receptacle ripening and acting upstream of the known regulator ABA.


Assuntos
Fragaria/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Cruzamentos Genéticos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fragaria/genética , Fragaria/fisiologia , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Modelos Biológicos , Interferência de RNA/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/efeitos dos fármacos , Regulação para Cima/genética
6.
BMC Genomics ; 15: 218, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742100

RESUMO

BACKGROUND: Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in γ-decalactone content in strawberry fruit. RESULTS: As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls γ-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of γ-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of γ-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones. CONCLUSIONS: Altogether, this study provides mechanistic information of how the production of γ-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants.


Assuntos
Mapeamento Cromossômico , Fragaria/genética , Lactonas/metabolismo , Locos de Características Quantitativas , Análise de Sequência de RNA , Sequência de Aminoácidos , Ácidos Graxos Dessaturases/classificação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Frutas/genética , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Regulação para Cima/genética
7.
Plant Physiol ; 159(2): 851-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22474217

RESUMO

Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype '1392', selected for its superior flavor, and '232' was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line '1392' displayed higher volatile levels than '232', and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening.


Assuntos
Aromatizantes/química , Fragaria/genética , Frutas/enzimologia , Furanos/química , Metiltransferases/isolamento & purificação , Locos de Características Quantitativas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Alelos , Sequência de Bases , Mapeamento Cromossômico , Fragaria/enzimologia , Frutas/genética , Genes de Plantas , Variação Genética , Instabilidade Genômica , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Análise de Componente Principal , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Compostos Orgânicos Voláteis/química
8.
Hortic Res ; 10(3): uhad006, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938573

RESUMO

Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.

9.
Front Plant Sci ; 13: 971846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061771

RESUMO

The diploid woodland strawberry (F. vesca) represents an important model for the genus Fragaria. Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry (F. × ananassa) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of FaCO and FaSOC1 in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in F. vesca while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of F. vesca, our study showed that FaCO responds to LD photoperiods as in F. vesca but delayed flowering to some extent, possibly by induction of the strong FaTFL1 repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes FaFT2 and FaFT3 while FaTFL1 upregulation was less prominent than that observed in F. vesca. In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.

10.
J Exp Bot ; 62(12): 4191-201, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21561953

RESUMO

Plants have several L-ascorbic acid (AsA) biosynthetic pathways, but the contribution of each one to the synthesis of AsA varyies between different species, organs, and developmental stages. Strawberry (Fragaria×ananassa) fruits are rich in AsA. The pathway that uses D-galacturonate as the initial substrate is functional in ripe fruits, but the contribution of other pathways to AsA biosynthesis has not been studied. The transcription of genes encoding biosynthetic enzymes such as D-galacturonate reductase (FaGalUR) and myo-inositol oxygenase (FaMIOX), and the AsA recycling enzyme monodehydroascorbate reductase (FaMDHAR) were positively correlated with the increase in AsA during fruit ripening. Fruit storage for 72 h in a cold room reduced the AsA content by 30%. Under an ozone atmosphere, this reduction was 15%. Ozone treatment increased the expression of the FaGalUR, FaMIOX, and L-galactose-1-phosphate phosphatase (FaGIPP) genes, and transcription of the L-galactono-1,4-lactone dehydrogenase (FaGLDH) and FAMDHAR genes was higher in the ozone-stored than in the air-stored fruits. Analysis of AsA content in a segregating population from two strawberry cultivars showed high variability, which did not correlate with the transcription of any of the genes studied. Study of GalUR protein in diverse cultivars of strawberry and different Fragaria species showed that a correlation between GalUR and AsA content was apparent in most cases, but it was not general. Three alleles were identified in strawberry, but any sequence effect on the AsA variability was eliminated by analysis of the allele-specific expression. Taken together, these results indicate that FaGalUR shares the control of AsA levels with other enzymes and regulatory elements in strawberry fruit.


Assuntos
Ácido Ascórbico/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Ácido Ascórbico/biossíntese , Sequência de Bases , Vias Biossintéticas/genética , DNA de Plantas/genética , Fragaria/enzimologia , Fragaria/genética , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Theor Appl Genet ; 123(5): 755-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21667037

RESUMO

Breeding for fruit quality traits in strawberry (Fragaria × ananassa, 2n = 8x = 56) is complex due to the polygenic nature of these traits and the octoploid constitution of this species. In order to improve the efficiency of genotype selection, the identification of quantitative trait loci (QTL) and associated molecular markers will constitute a valuable tool for breeding programs. However, the implementation of these markers in breeding programs depends upon the complexity and stability of QTLs across different environments. In this work, the genetic control of 17 agronomical and fruit quality traits was investigated in strawberry using a F(1) population derived from an intraspecific cross between two contrasting selection lines, '232' and '1392'. QTL analyses were performed over three successive years based on the separate parental linkage maps and a pseudo-testcross strategy. The integrated strawberry genetic map consists of 338 molecular markers covering 37 linkage groups, thus exceeding the 28 chromosomes. 33 QTLs were identified for 14 of the 17 studied traits and approximately 37% of them were stable over time. For each trait, 1-5 QTLs were identified with individual effects ranging between 9.2 and 30.5% of the phenotypic variation, indicating that all analysed traits are complex and quantitatively inherited. Many QTLs controlling correlated traits were co-located in homoeology group V, indicating linkage or pleiotropic effects of loci. Candidate genes for several QTLs controlling yield, anthocyanins, firmness and L-ascorbic acid are proposed based on both their co-localization and predicted function. We also report conserved QTLs among strawberry and other Rosaceae based on their syntenic location.


Assuntos
Fragaria/genética , Frutas/genética , Locos de Características Quantitativas , Antocianinas/genética , Antocianinas/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ligação Genética , Marcadores Genéticos , Fenótipo , Polimorfismo Genético , Poliploidia
12.
Front Plant Sci ; 12: 688481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512686

RESUMO

Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.

13.
Hortic Res ; 8(1): 58, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750764

RESUMO

The strawberry Fra a 1 proteins belong to the class 10 Pathogenesis-Related (PR-10) superfamily. In strawberry, a large number of members have been identified, but only a limited number is expressed in the fruits. In this organ, Fra a 1.01 and Fra a 1.02 are the most abundant Fra proteins in the green and red fruits, respectively, however, their function remains unknown. To know the function of Fra a 1.02 we have generated transgenic lines that silence this gene, and performed metabolomics, RNA-Seq, and hormonal assays. Previous studies associated Fra a 1.02 to strawberry fruit color, but the analysis of anthocyanins in the ripe fruits showed no diminution in their content in the silenced lines. Gene ontology (GO) analysis of the genes differentially expressed indicated that oxidation/reduction was the most represented biological process. Redox state was not apparently altered since no changes were found in ascorbic acid and glutathione (GSH) reduced/oxidized ratio, but GSH content was reduced in the silenced fruits. In addition, a number of glutathione-S-transferases (GST) were down-regulated as result of Fra a 1.02-silencing. Another highly represented GO category was transport which included a number of ABC and MATE transporters. Among the regulatory genes differentially expressed WRKY33.1 and WRKY33.2 were down-regulated, which had previously been assigned a role in strawberry plant defense. A reduced expression of the VQ23 gene and a diminished content of the hormones JA, SA, and IAA were also found. These data might indicate that Fra a 1.02 participates in the defense against pathogens in the ripe strawberry fruits.

14.
BMC Genomics ; 11: 503, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20849591

RESUMO

BACKGROUND: Cultivated strawberry is a hybrid octoploid species (Fragaria xananassa Duchesne ex. Rozier) whose fruit is highly appreciated due to its organoleptic properties and health benefits. Despite recent studies on the control of its growth and ripening processes, information about the role played by different hormones on these processes remains elusive. Further advancement of this knowledge is hampered by the limited sequence information on genes from this species, despite the abundant information available on genes from the wild diploid relative Fragaria vesca. However, the diploid species, or one ancestor, only partially contributes to the genome of the cultivated octoploid. We have produced a collection of expressed sequence tags (ESTs) from different cDNA libraries prepared from different fruit parts and developmental stages. The collection has been analysed and the sequence information used to explore the involvement of different hormones in fruit developmental processes, and for the comparison of transcripts in the receptacle of ripe fruits of diploid and octoploid species. The study is particularly important since the commercial fruit is indeed an enlarged flower receptacle with the true fruits, the achenes, on the surface and connected through a network of vascular vessels to the central pith. RESULTS: We have sequenced over 4,500 ESTs from Fragaria xananassa, thus doubling the number of ESTs available in the GenBank of this species. We then assembled this information together with that available from F. xananassa resulting a total of 7,096 unigenes. The identification of SSRs and SNPs in many of the ESTs allowed their conversion into functional molecular markers. The availability of libraries prepared from green growing fruits has allowed the cloning of cDNAs encoding for genes of auxin, ethylene and brassinosteroid signalling processes, followed by expression studies in selected fruit parts and developmental stages. In addition, the sequence information generated in the project, jointly with previous information on sequences from both F. xananassa and F. vesca, has allowed designing an oligo-based microarray that has been used to compare the transcriptome of the ripe receptacle of the diploid and octoploid species. Comparison of the transcriptomes, grouping the genes by biological processes, points to differences being quantitative rather than qualitative. CONCLUSIONS: The present study generates essential knowledge and molecular tools that will be useful in improving investigations at the molecular level in cultivated strawberry (F. xananassa). This knowledge is likely to provide useful resources in the ongoing breeding programs. The sequence information has already allowed the development of molecular markers that have been applied to germplasm characterization and could be eventually used in QTL analysis. Massive transcription analysis can be of utility to target specific genes to be further studied, by their involvement in the different plant developmental processes.


Assuntos
Etiquetas de Sequências Expressas/metabolismo , Fragaria/genética , Frutas/genética , Parede Celular/metabolismo , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Regulação para Baixo/genética , Etilenos/metabolismo , Fragaria/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Repetições Minissatélites/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Regulação para Cima/genética
15.
Sci Rep ; 10(1): 20197, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214566

RESUMO

Phenylpropanoids are a large class of plant secondary metabolites, which play essential roles in human health mainly associated with their antioxidant activity. Strawberry (Fragaria × ananassa) is a rich source of phytonutrients, including phenylpropanoids, which have been shown to have beneficial effects on human health. In this study, using the F. × ananassa '232' × '1392' F1 segregating population, we analyzed the genetic control of individual phenylpropanoid metabolites, total polyphenol content (TPC) and antioxidant capacity (TEAC) in strawberry fruit over two seasons. We have identified a total of 7, 9, and 309 quantitative trait loci (QTL) for TPC, TEAC and for 77 polar secondary metabolites, respectively. Hotspots of stable QTL for health-related antioxidant compounds were detected on linkage groups LG IV-3, LG V-2 and V-4, and LG VI-1 and VI-2, where associated markers represent useful targets for marker-assisted selection of new varieties with increased levels of antioxidant secondary compounds. Moreover, differential expression of candidate genes for major and stable mQTLs was studied in fruits of contrasting lines in important flavonoids. Our results indicate that higher expression of FaF3'H, which encodes the flavonoid 3'-hydroxylase, is associated with increased content of these important flavonoids.


Assuntos
Antioxidantes/metabolismo , Fragaria/genética , Frutas/metabolismo , Compostos Fitoquímicos/genética , Polifenóis/genética , Mapeamento Cromossômico , Fragaria/metabolismo , Genótipo , Compostos Fitoquímicos/metabolismo , Polifenóis/metabolismo , Locos de Características Quantitativas
16.
Hortic Res ; 6: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30603090

RESUMO

Improvement of nutritional and organoleptic quality of fruits is a key goal in current strawberry breeding programs. The ratio of sugars to acids is a determinant factor contributing to fruit liking, although different sugars and acids contribute in varying degrees to this complex trait. A segregating F1 population of 95 individuals, previously characterized for several fruit quality characters, was used to map during 2 years quantitative trait loci (QTL) for 50 primary metabolites, l-ascorbic acid (L-AA) and other related traits such as soluble solid content (SSC), titratable acidity (TA), and pH. A total of 133 mQTL were detected above the established thresholds for 44 traits. Only 12.9% of QTL were detected in the 2 years, suggesting a large environmental influence on primary metabolite content. An objective of this study was the identification of key metabolites that were associated to the overall variation in SSC and acidity. As it was observed in previous studies, a number of QTL controlling several metabolites and traits were co-located in homoeology group V (HG V). mQTL controlling a large variance in raffinose, sucrose, succinic acid, and L-AA were detected in approximate the same chromosomal regions of different homoeologous linkage groups belonging to HG V. Candidate genes for selected mQTL are proposed based on their co-localization, on the predicted function, and their differential gene expression among contrasting F1 progeny lines. RNA-seq analysis from progeny lines contrasting in L-AA content detected 826 differentially expressed genes and identified Mannose-6-phosphate isomerase, FaM6PI1, as a candidate gene contributing to natural variation in ascorbic acid in strawberry fruit.

17.
J Agric Food Chem ; 66(3): 581-592, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29291263

RESUMO

Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.


Assuntos
Antioxidantes/análise , Fragaria/enzimologia , Frutas/química , Neoplasias Hepáticas/tratamento farmacológico , Oxigenases/genética , Proteínas de Plantas/genética , Antocianinas/análise , Antocianinas/biossíntese , Antocianinas/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Fragaria/química , Fragaria/genética , Frutas/enzimologia , Frutas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Polifenóis/farmacologia
18.
Mol Breed ; 37(10): 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29070959

RESUMO

Flavor improvement is currently one of the most important goals for strawberry breeders. At the same time, it is one of the most complex traits to improve, involving the balanced combination of several desired characteristics such as high sweetness, moderate acidity, and the appropriate combination of aroma compounds that are beginning to be delineated in consumer tests. DNA-informed breeding will expedite the selection of complex traits, such as flavor, over traditional phenotypic evaluation, particularly when markers linked to several traits of interests are combined during the breeding process. Natural variation in mesifurane and γ-decalactone, two key volatile compounds providing sweet Sherry and fresh peach-like notes to strawberry fruits, is controlled by the FaOMT and FaFAD1 genes, respectively. In this study, we have optimized a simple PCR test for combined analysis of these genes and determined a prediction accuracy above 91% using a set of 71 diverse strawberry accessions. This high accuracy in predicting the presence of these important volatiles combined with the simplicity of the analytical methodology makes this DNA test an efficient tool for its implementation in current strawberry-breeding programs for the selection of new strawberry cultivars with superior flavor.

19.
Sci Rep ; 7(1): 13737, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062051

RESUMO

RNA-seq has been used to perform global expression analysis of the achene and the receptacle at four stages of fruit ripening, and of the roots and leaves of strawberry (Fragaria × ananassa). About 967 million reads and 191 Gb of sequence were produced, using Illumina sequencing. Mapping the reads in the related genome of the wild diploid Fragaria vesca revealed differences between the achene and receptacle development program, and reinforced the role played by ethylene in the ripening receptacle. For the strawberry transcriptome assembly, a de novo strategy was followed, generating separate assemblies for each of the ten tissues and stages sampled. The Trinity program was used for these assemblies, resulting in over 1.4 M isoforms. Filtering by a threshold of 0.3 FPKM, and doing Blastx (E-value < 1 e-30) against the UniProt database of plants reduced the number to 472,476 isoforms. Their assembly with the MIRA program (90% homology) resulted in 26,087 contigs. From these, 91.34 percent showed high homology to Fragaria vesca genes and 87.30 percent Fragaria iinumae (BlastN E-value < 1 e-100). Mapping back the reads on the MIRA contigs identified polymorphisms at nucleotide level, using FREEBAYES, as well as estimate their relative abundance in each sample.


Assuntos
Fragaria/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fragaria/crescimento & desenvolvimento , Frutas/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Polimorfismo Genético
20.
Front Plant Sci ; 8: 889, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611805

RESUMO

The role of auxin in ripening strawberry (Fragaria ×ananassa) fruits has been restricted to the early stages of development where the growth of the receptacle is dependent on the delivery of auxin from the achenes. At later stages, during enlargement of the receptacle, other hormones have been demonstrated to participate to different degrees, from the general involvement of gibberellins and abscisic acid to the more specific of ethylene. Here we report the involvement of auxin at the late stages of receptacle ripening. The auxin content of the receptacle remains constant during ripening. Analysis of the transcriptome of ripening strawberry fruit revealed the changing expression pattern of the genes of auxin synthesis, perception, signaling and transport along with achene and receptacle development from the green to red stage. Specific members of the corresponding gene families show active transcription in the ripe receptacle. For the synthesis of auxin, two genes encoding tryptophan aminotransferases, FaTAA1 and FaTAR2, were expressed in the red receptacle, with FaTAR2 expression peaking at this stage. Transient silencing of this gene in ripening receptacle was accompanied by a diminished responsiveness to auxin. The auxin activity in the ripening receptacle is supported by the DR5-directed expression of a GUS reporter gene in the ripening receptacle of DR5-GUS transgenic strawberry plants. Clustering by co-expression of members of the FaAux/IAA and FaARF families identified five members whose transcriptional activity was increased with the onset of receptacle ripening. Among these, FaAux/IAA11 and FaARF6a appeared, by their expression level and fold-change, as the most likely candidates for their involvement in the auxin activity in the ripening receptacle. The association of the corresponding ARF6 gene in Arabidopsis to cell elongation constitutes a suggestive hypothesis for FaARF6a involvement in the same cellular process in the growing and ripening receptacle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA