Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nano Lett ; 24(2): 557-565, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179964

RESUMO

The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.

2.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598721

RESUMO

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES). The microcavity is patterned using focused ion beam etching to realize arbitrary lattice geometries, including defect sites on demand. The band structure of the lattice and the emergence of condensation are imaged using momentum-resolved spectroscopy. The introduction of defect sites is shown to lower the condensation threshold and result in the formation of a defect band in the condensation spectrum. The present approach allows us to study periodic, quasiperiodic, and disordered polariton condensate lattices at room temperature using a direct-write approach.

3.
J Am Chem Soc ; 146(19): 13326-13335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693621

RESUMO

A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the µs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.

4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619060

RESUMO

Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light-matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid-liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes.

5.
J Am Chem Soc ; 145(28): 15275-15283, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417583

RESUMO

The quintet triplet-pair state may be generated upon singlet fission and is a critical intermediate that dictates the fate of excitons, which can be exploited for photovoltaics, information technologies, and biomedical imaging. In this report, we demonstrate that continuous-wave and pulsed electron spin resonance techniques such as phase-inverted echo-amplitude detected nutation (PEANUT), which have emerged as the primary tool for identifying the spin pathways in singlet fission, probe fundamentally different triplet-pair species. We directly observe that the generation rate of high-spin triplet pairs is dependent on the molecular orientation with respect to the static magnetic field. Moreover, we demonstrate that this observation can prevent incorrect analysis of continuous-wave electron spin resonance (cw-ESR) measurements and provide insight into the design of materials to target specific pathways that optimize exciton properties for specific applications.

6.
J Am Chem Soc ; 145(40): 22058-22068, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787467

RESUMO

The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.

7.
J Am Chem Soc ; 144(7): 3269-3278, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35166107

RESUMO

Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.

8.
Proc Natl Acad Sci U S A ; 116(27): 13215-13220, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209027

RESUMO

Research on plasmons of gold nanoparticles has gained broad interest in nanoscience. However, ultrasmall sizes near the metal-to-nonmetal transition regime have not been explored until recently due to major synthetic difficulties. Herein, intriguing electron dynamics in this size regime is observed in atomically precise Au333(SR)79 nanoparticles. Femtosecond transient-absorption spectroscopy reveals an unprecedented relaxation process of 4-5 ps-a fast phonon-phonon relaxation process, together with electron-phonon coupling (∼1 ps) and normal phonon-phonon coupling (>100 ps) processes. Three types of -R capped Au333(SR)79 all exhibit two plasmon-bleaching signals independent of the -R group as well as solvent, indicating plasmon splitting and quantum effect in the ultrasmall core of Au333(SR)79 This work is expected to stimulate future work on the transition-size regime of nanometals and discovery of behavior of nascent plasmons.

9.
J Am Chem Soc ; 142(47): 19917-19925, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174728

RESUMO

Triplet-triplet annihilation upconversion (TTA-UC) is an unconventional photophysical process that yields high-energy photons from low-energy incident light and offers pathways for innovation across many technologies, including solar energy harvesting, photochemistry, and optogenetics. Within aromatic organic chromophores, TTA-UC is achieved through several consecutive energy conversion events that ultimately fuse two triplet excitons into a singlet exciton. In chromophores where the singlet exciton is roughly isoergic with two triplet excitons, the limiting step is the triplet-triplet annihilation pathway, where the kinetics and yield depend sensitively on the energies of the lowest singlet and triplet excited states. Herein we report up to 40-fold improvements in upconversion quantum yields using molecular engineering to selectively tailor the relative energies of the lowest singlet and triplet excited states, enhancing the yield of triplet-triplet annihilation and promoting radiative decay of the resulting singlet exciton. Using this general and effective strategy, we obtain upconversion yields with red emission that are among the highest reported, with remarkable chemical stability under ambient conditions.

10.
J Phys Chem A ; 124(45): 9392-9399, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33138366

RESUMO

A major benefit of intramolecular singlet fission (iSF) materials, in which through-bond interactions mediate triplet pair formation, is the ability to control the triplet formation dynamics through molecular engineering. One common design strategy is the use of molecular bridges to mediate interchromophore interactions, decreasing electronic coupling by increasing chromophore-chromophore separation. Here, we report how the judicious choice of aromatic bridges can enhance chromophore-chromophore electronic coupling. This molecular engineering strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked singlet fission chromophores, resulting in fast iSF even at large interchromophore separations. Using transient absorption spectroscopy, we investigate this bridge resonance effect in a series of pentacene and tetracene-bridged dimers, and we find that the rate of triplet formation is enhanced as the bridge orbitals approach resonance. This work highlights the important role of molecular connectivity in controlling the rate of iSF through chemical bonds and establishes critical design principles for future use of iSF materials in optoelectronic devices.

11.
J Chem Phys ; 153(24): 244902, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380093

RESUMO

Polymers are desirable optoelectronic materials, stemming from their solution processability, tunable electronic properties, and large absorption coefficients. An exciting development is the recent discovery that singlet fission (SF), the conversion of a singlet exciton to a pair of triplet states, can occur along the backbone of an individual conjugated polymer chain. Compared to other intramolecular SF compounds, the nature of the triplet pair state in SF polymers remains poorly understood, hampering the development of new materials with optimized excited state dynamics. Here, we investigate the effect of solvent polarity on the triplet pair dynamics in the SF polymer polybenzodithiophene-thiophene-1,1-dioxide. We use transient emission measurements to study isolated polymer chains in solution and use the change in the solvent polarity to investigate the role of charge transfer character in both the singlet exciton and the triplet pair multiexciton. We identify both singlet fluorescence and direct triplet pair emission, indicating significant symmetry breaking. Surprisingly, the singlet emission peak is relatively insensitive to solvent polarity despite its nominal "charge-transfer" nature. In contrast, the redshift of the triplet pair energy with increasing solvent polarity indicates significant charge transfer character. While the energy separation between singlet and triplet pair states increases with solvent polarity, the overall SF rate constant depends on both the energetic driving force and additional environmental factors. The triplet pair lifetime is directly determined by the solvent effect on its overall energy. The dominant recombination channel is a concerted, radiationless decay process that scales as predicted by a simple energy gap law.

12.
Proc Natl Acad Sci U S A ; 114(24): E4697-E4705, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559316

RESUMO

Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. Little is known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. Here, we reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ∼100-ps localization from the two vertexes of three icosahedrons to one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm-1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The observed electron localization phenomenon provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.

13.
J Am Chem Soc ; 141(23): 9180-9184, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184152

RESUMO

Triplet fusion upconversion, the conversion of two low-energy photons into one higher-energy photon via excitonic intermediates, has the potential to revolutionize fields as diverse as biological imaging, photovoltaics, and optogenetics. However, important hurdles to widespread application still exist; for example, the vast majority of demonstrations are in nonpolar solvents, limiting applications. Furthermore, the necessary high concentrations of dyes limit optical penetration depth. Efforts toward aqueous solutions utilizing micelles and other nanoencapsulants have been limited by poor efficiencies or scatter from the nanoparticles. Here, we demonstrate a facile micellular fabrication method that drives a high boiling point solvent into the core of a block copolymer micelle, greatly reducing molecular aggregation. We show that this simple preparation is scalable and provides benefits across five different colors of photon upconversion. We expect this simple, user-friendly, and high-performance system to aid a multitude of photon upconversion applications, in particular, for optogenetics, photodynamic therapy, and photochemistry.


Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Fótons , Água , Corantes/química , Transferência de Energia , Optogenética , Fotoquimioterapia
14.
J Am Chem Soc ; 141(50): 19754-19764, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31809035

RESUMO

The evolution of the optical properties of gold nanoclusters (NCs) versus size is of great importance because it not only reveals the nature of quantum confinement in NCs, but also helps to understand how the molecular-like Au NCs transit to plasmonic nanoparticles. While some work has been done in studying the optical properties of NCs of certain individual sizes, the global picture remains unclear, such as the detailed relationship between size/structure and properties. Here, we investigate the grand evolution of the optical properties by comparing the steady-state absorption, bandgap, transient absorption, as well as carrier dynamics of a series of thiolate-protected gold NCs ranging from tens to hundreds of gold atoms. We find that, on the basis of their optical behaviors, gold NCs can be classified into three groups: (i) ultrasmall NCs (ca. <50 Au atoms) are nonscalable as their optical properties are strongly dependent on the structure rather than size; (ii) medium-sized NCs (about 50-100 Au atoms) show both size- and structure-dependent optical properties; and (iii) large-sized gold NCs (ca. >100 Au atoms) exhibit optical properties solely dependent on size, and the structure effect fades out. Unraveling the grand evolution from nonscalable to scalable optical properties and their mechanisms will greatly deepen scientific understanding of the nature of quantum-sized gold NCs and will also provide implications for plasmonic NPs.

15.
J Am Chem Soc ; 141(24): 9564-9569, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31117645

RESUMO

Singlet fission has emerged as a key mechanism of exciton multiplication in organic chromophores, generating two triplet excitons from a single photon. Singlet fission is typically studied in crystalline films or in isolated dimers. Here, we investigate an intermediate regime where through-space interactions mediate singlet fission and triplet pair recombination within isolated polymer chains. Specifically, we investigate how appending pentacenes to a polynorbornene backbone can lead to macromolecules that take advantage of through-space π-π interactions for fast singlet fission and rapid triplet pair dissociation. Singlet fission in these systems is affected by molecular dynamics, and triplet-triplet recombination is a geminate process where the rate of recombination scales with molecular-weight. We find that these pendent pentacene polymers yield free triplets with lifetimes that surpass those of crystalline chromophores in both solution as isolated polymers and in thin films.

16.
J Phys Chem A ; 123(13): 2527-2536, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30802051

RESUMO

Recent synthetic studies on the organic molecules tetracene and pentacene have found certain dimers and oligomers to exhibit an intense absorption in the visible region of the spectrum that is not present in the monomer or many previously studied dimers. In this article we combine experimental synthesis with electronic structure theory and spectral computation to show that this absorption arises from an otherwise dark charge-transfer excitation "borrowing intensity" from an intense UV excitation. Further, by characterizing the role of relevant monomer molecular orbitals, we arrive at a design principle that allows us to predict the presence or absence of an additional absorption based on the bonding geometry of the dimer. We find this rule correctly explains the spectra of a wide range of acene derivatives and solves an unexplained structure-spectrum phenomenon first observed over 70 years ago. These results pave the way for the design of highly absorbent chromophores with applications ranging from photovoltaics to liquid crystals.

17.
J Chem Phys ; 151(22): 224702, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837697

RESUMO

We synthesized a new class of heterostructures by depositing CdS, CdSe, or CdTe quantum dots (QDs) onto α-V2O5 nanowires (NWs) via either successive ionic layer adsorption and reaction (SILAR) or linker-assisted assembly (LAA). SILAR yielded the highest loadings of QDs per NW, whereas LAA enabled better control over the size and properties of QDs. Soft and hard x-ray photoelectron spectroscopy in conjunction with density functional theory calculations revealed that all α-V2O5/QD heterostructures exhibited Type-II band offset energetics, with a staggered gap where the conduction- and valence-band edges of α-V2O5 NWs lie at lower energies (relative to the vacuum level) than their QD counterparts. Transient absorption spectroscopy measurements revealed that the Type-II energetic offsets promoted the ultrafast (10-12-10-11 s) separation of photogenerated electrons and holes across the NW/QD interface to yield long-lived (10-6 s) charge-separated states. Charge-transfer dynamics and charge-recombination time scales varied subtly with the composition of heterostructures and the nature of the NW/QD interface, with both charge separation and recombination occurring more rapidly within SILAR-derived heterostructures. LAA-derived α-V2O5/CdSe heterostructures promoted the photocatalytic reduction of aqueous protons to H2 with a 20-fold or greater enhancement relative to isolated colloidal CdSe QDs or dispersed α-V2O5 NWs. The separation of photoexcited electrons and holes across the NW/QD interface could thus be exploited in redox photocatalysis. In light of their programmable compositions and properties and their Type-II energetics that drive ultrafast charge separation, the α-V2O5/QD heterostructures are a promising new class of photocatalyst architectures ripe for continued exploration.

18.
Angew Chem Int Ed Engl ; 58(52): 18798-18802, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31702861

RESUMO

The synthesis and structure of atomically precise Au130-x Agx (average x=98) alloy nanoclusters protected by 55 ligands of 4-tert-butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag-rich sites is found, which is enclosed by a Marks decahedral cage of Au-rich sites. The surface is exclusively Ag-SR; X-ray absorption fine structure analysis supports the absence of Au-S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non-plasmon nature. The non-metallicity of the Au130-x Agx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic-level insights into the Au-Ag bonds in bimetallic nanoclusters.

19.
J Am Chem Soc ; 140(17): 5691-5695, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29658712

RESUMO

The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au279(SR)84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au246(SR)80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au246 to metallic Au279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.

20.
J Am Chem Soc ; 140(49): 17163-17174, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380858

RESUMO

Tackling the complex challenge of harvesting solar energy to generate energy-dense fuels such as hydrogen requires the design of photocatalytic nanoarchitectures interfacing components that synergistically mediate a closely interlinked sequence of light-harvesting, charge separation, charge/mass transport, and catalytic processes. The design of such architectures requires careful consideration of both thermodynamic offsets and interfacial charge-transfer kinetics to ensure long-lived charge carriers that can be delivered at low overpotentials to the appropriate catalytic sites while mitigating parasitic reactions such as photocorrosion. Here we detail the theory-guided design and synthesis of nanowire/quantum dot heterostructures with interfacial electronic structure specifically tailored to promote light-induced charge separation and photocatalytic proton reduction. Topochemical synthesis yields a metastable ß-Sn0.23V2O5 compound exhibiting Sn 5s-derived midgap states ideally positioned to extract photogenerated holes from interfaced CdSe quantum dots. The existence of these midgap states near the upper edge of the valence band (VB) has been confirmed, and ß-Sn0.23V2O5/CdSe heterostructures have been shown to exhibit a 0 eV midgap state-VB offset, which underpins ultrafast subpicosecond hole transfer. The ß-Sn0.23V2O5/CdSe heterostructures are further shown to be viable photocatalytic architectures capable of efficacious hydrogen evolution. The results of this study underscore the criticality of precisely tailoring the electronic structure of semiconductor components to effect rapid charge separation necessary for photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA