Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theory Comput Syst ; 63(1): 4-25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872950

RESUMO

We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE). We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players.

2.
Algorithmica ; 80(4): 1115-1145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31983796

RESUMO

We study the inefficiency of mixed Nash equilibria, expressed as the price of anarchy, of all-pay auctions in three different environments: combinatorial, multi-unit and single-item auctions. First, we consider item-bidding combinatorial auctions where m all-pay auctions run in parallel, one for each good. For fractionally subadditive valuations, we strengthen the upper bound from 2 (Syrgkanis and Tardos in Proceedings of the 45th symposium on theory of computing (STOC '13), 2013) to 1.82 by proving some structural properties that characterize the mixed Nash equilibria of the game. Next, we design an all-pay mechanism with a randomized allocation rule for the multi-unit auction. We show that, for bidders with submodular valuations, the mechanism admits a unique, 75 % efficient, pure Nash equilibrium. The efficiency of this mechanism outperforms all the known bounds on the price of anarchy of mixed Nash equilibria in mechanisms used for multi-unit auctions. Finally, we analyze single-item all-pay auctions motivated by their connection to contests and show tight bounds on the price of anarchy with respect to social welfare, revenue and maximum bid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA