Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 513(7518): 382-7, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043054

RESUMO

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA 'microsatellite instability/CpG island methylation phenotype' transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Genômica , Proteoma/metabolismo , Neoplasias Retais/genética , Neoplasias Retais/metabolismo , Transcriptoma/genética , Cromossomos Humanos Par 20/genética , Ilhas de CpG/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA , Fator 4 Nuclear de Hepatócito/genética , Humanos , Repetições de Microssatélites/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mutação Puntual/genética , Proteoma/análise , Proteoma/genética , Proteômica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas pp60(c-src)/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/análise , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
2.
Mol Cell Proteomics ; 14(9): 2357-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25693799

RESUMO

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Assuntos
Proteínas de Neoplasias/sangue , Neoplasias/metabolismo , Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/sangue , Peptídeos/química , Reprodutibilidade dos Testes
3.
Mol Cell Proteomics ; 12(9): 2623-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23689285

RESUMO

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.


Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Bovinos , Limite de Detecção , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Padrões de Referência , Software , Fatores de Tempo
4.
Cancer Res ; 75(7): 1495-503, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25670172

RESUMO

Tumor protein phosphorylation analysis may provide insight into intracellular signaling networks underlying tumor behavior, revealing diagnostic, prognostic or therapeutic information. Human tumors collected by The Cancer Genome Atlas program potentially offer the opportunity to characterize activated networks driving tumor progression, in parallel with the genetic and transcriptional landscape already documented for these tumors. However, a critical question is whether cellular signaling networks can be reliably analyzed in surgical specimens, where freezing delays and spatial sampling disparities may potentially obscure physiologic signaling. To quantify the extent of these effects, we analyzed the stability of phosphotyrosine (pTyr) sites in ovarian and colon tumors collected under conditions of controlled ischemia and in the context of defined intratumoral sampling. Cold-ischemia produced a rapid, unpredictable, and widespread impact on tumor pTyr networks within 5 minutes of resection, altering up to 50% of pTyr sites by more than 2-fold. Effects on adhesion and migration, inflammatory response, proliferation, and stress response pathways were recapitulated in both ovarian and colon tumors. In addition, sampling of spatially distinct colon tumor biopsies revealed pTyr differences as dramatic as those associated with ischemic times, despite uniform protein expression profiles. Moreover, intratumoral spatial heterogeneity and pTyr dynamic response to ischemia varied dramatically between tumors collected from different patients. Overall, these findings reveal unforeseen phosphorylation complexity, thereby increasing the difficulty of extracting physiologically relevant pTyr signaling networks from archived tissue specimens. In light of this data, prospective tumor pTyr analysis will require appropriate sampling and collection protocols to preserve in vivo signaling features.


Assuntos
Fosfotirosina/metabolismo , Artefatos , Hipóxia Celular , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Fosforilação , Estudos Prospectivos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA