RESUMO
BACKGROUND: Patterns in general consumer online search logs have been used to monitor health conditions and to predict health-related activities, but the multiple contexts within which consumers perform online searches make significant associations difficult to interpret. Physician information-seeking behavior has typically been analyzed through survey-based approaches and literature reviews. Activity logs from health care professionals using online medical information resources are thus a valuable yet relatively untapped resource for large-scale medical surveillance. OBJECTIVE: To analyze health care professionals' information-seeking behavior and assess the feasibility of measuring drug-safety alert response from the usage logs of an online medical information resource. METHODS: Using two years (2011-2012) of usage logs from UpToDate, we measured the volume of searches related to medical conditions with significant burden in the United States, as well as the seasonal distribution of those searches. We quantified the relationship between searches and resulting page views. Using a large collection of online mainstream media articles and Web log posts we also characterized the uptake of a Food and Drug Administration (FDA) alert via changes in UpToDate search activity compared with general online media activity related to the subject of the alert. RESULTS: Diseases and symptoms dominate UpToDate searches. Some searches result in page views of only short duration, while others consistently result in longer-than-average page views. The response to an FDA alert for Celexa, characterized by a change in UpToDate search activity, differed considerably from general online media activity. Changes in search activity appeared later and persisted longer in UpToDate logs. The volume of searches and page view durations related to Celexa before the alert also differed from those after the alert. CONCLUSIONS: Understanding the information-seeking behavior associated with online evidence sources can offer insight into the information needs of health professionals and enable large-scale medical surveillance. Our Web log mining approach has the potential to monitor responses to FDA alerts at a national level. Our findings can also inform the design and content of evidence-based medical information resources such as UpToDate.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Comportamento de Busca de Informação , Internet , Médicos , Ferramenta de Busca , Estudos de Viabilidade , Pessoal de Saúde , Humanos , Segurança , Inquéritos e Questionários , Estados Unidos , United States Food and Drug AdministrationRESUMO
AIMS: Electronic health records (EHR), containing rich clinical histories of large patient populations, can provide evidence for clinical decisions when evidence from trials and literature is absent. To enable such observational studies from EHR in real time, particularly in emergencies, rapid confounder control methods that can handle numerous variables and adjust for biases are imperative. This study compares the performance of 18 automatic confounder control methods. METHODS: Methods include propensity scores, direct adjustment by machine learning, similarity matching and resampling in two simulated and one real-world EHR datasets. RESULTS & CONCLUSIONS: Direct adjustment by lasso regression and ensemble models involving multiple resamples have performance comparable to expert-based propensity scores and thus, may help provide real-time EHR-based evidence for timely clinical decisions.
Assuntos
Fatores de Confusão Epidemiológicos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Algoritmos , Estudos de Coortes , Humanos , Aprendizado de Máquina/estatística & dados numéricos , Pontuação de PropensãoRESUMO
BACKGROUND AND OBJECTIVE: Several studies have demonstrated the ability to detect adverse events potentially related to multiple drug exposure via data mining. However, the number of putative associations produced by such computational approaches is typically large, making experimental validation difficult. We theorized that those potential associations for which there is evidence from multiple complementary sources are more likely to be true, and explored this idea using a published database of drug-drug-adverse event associations derived from electronic health records (EHRs). METHODS: We prioritized drug-drug-event associations derived from EHRs using four sources of information: (1) public databases, (2) sources of spontaneous reports, (3) literature, and (4) non-EHR drug-drug interaction (DDI) prediction methods. After pre-filtering the associations by removing those found in public databases, we devised a ranking for associations based on the support from the remaining sources, and evaluated the results of this rank-based prioritization. RESULTS: We collected information for 5983 putative EHR-derived drug-drug-event associations involving 345 drugs and ten adverse events from four data sources and four prediction methods. Only seven drug-drug-event associations (<0.5 %) had support from the majority of evidence sources, and about one third (1777) had support from at least one of the evidence sources. CONCLUSIONS: Our proof-of-concept method for scoring putative drug-drug-event associations from EHRs offers a systematic and reproducible way of prioritizing associations for further study. Our findings also quantify the agreement (or lack thereof) among complementary sources of evidence for drug-drug-event associations and highlight the challenges of developing a robust approach for prioritizing signals of these associations.