Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 2): 116227, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244494

RESUMO

Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.


Assuntos
Ecossistema , Plásticos , Humanos , Plásticos/toxicidade , Solo , Microplásticos , Cadeia Alimentar
2.
J Contam Hydrol ; 265: 104384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880032

RESUMO

With increasing phosphate (P) entering the environment during agricultural application, the subsurface flow of particular P has been recently discussed as a vital P transport pathway. Iron (oxyhydr)oxide colloid-facilitated P transport is critical for iron and P biogeochemical processes in the subsurface. This study investigated the ferrihydrite colloid-facilitated P transport through adsorption and column experiments under different P concentrations and three pH conditions. Increased P loading on ferrihydrite colloids decreased the transport of ferrihydrite colloids (< 8.0%) under acid conditions through pore straining and irreversible attachment. Under neutral and alkaline conditions, ferrihydrite colloids exhibited more negative surfaces and smaller diameters with increasing P, which further enhanced ferrihydrite colloid transport (maximum to 95.6%). Ferrihydrite colloid-facilitated P transport was limited under acid conditions, and it was 10% - 57% enhancement under neutral and alkaline conditions with increasing P adsorption. Under neutral conditions, ferrihydrite colloid-facilitated P transport was strongest (maximum to 68.84%) because of its stronger ferrihydrite colloid transport than under acid conditions and larger P adsorption capacity than under alkaline conditions. Our findings indicate that the facilitated transport of ferrihydrite colloids in the presence of P may be appreciable in iron and phosphate-rich soil and subsurface systems, which is essential for evaluating the fate of iron and iron-facilitated P and potential environmental risks of P transport in the subsurface.


Assuntos
Compostos Férricos , Fosfatos , Compostos Férricos/química , Fosfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Coloides/química , Movimentos da Água , Poluentes Químicos da Água/química
3.
Front Chem ; 9: 629054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327190

RESUMO

Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.

4.
Chemosphere ; 267: 128897, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33248734

RESUMO

Crop productivity and soil health are limited by organic carbon (OC), however, the variations in the mechanisms of SOC preservation in a complete soil profile subjected to long-term fertilization remains unclear. The objective of the study was to examined the content and profile distribution of the distinctive SOC protection mechanisms on a complete profile (0-100 cm) of Eumorthic Anthrosols in Northwest China after 23 years of chemical and manure fertilization. The soil was fractionated by combined physical-chemical and density floatation techniques. Throughout the profile, significant variations were observed among fractions. In the topsoil (0-20 and 20-40 cm), mineral coupling with the fertilization of manure (MNPK) enhanced total SOC content and recorded for 29% of SOC in the 0-20 and 20-40 cm layers. Moreover, MNPK increased the SOC content of the unprotected cPOC fraction by 60.9% and 61.5% in the 0-20 and 20-40 cm layer, while SOC content was low in the subsoil layers (40-60, 60-80 and 80-100 cm, respectively) compared with the control (C). The highest OC under MNPK in physically protected micro-aggregates (µagg) (6.36 and 6.06 g C kg-1), and occluded particulate organic carbon (iPOC) (1.41 and 1.29 g C kg-1) was found in the topsoil layers. The unprotected cPOC fraction was the greatest C accumulating fraction in the topsoil layers, followed by µagg and H-µSilt fractions in the soil profile, implying that these fractions were the most sensitive to the fertilization treatments. Overall, the unprotected, physically protected, and physico-chemically protected fractions were the dominant fractions for the sequestration of carbon across fertilization treatments and soil layers.


Assuntos
Carbono , Solo , Agricultura , Povo Asiático , Carbono/análise , China , Fertilização , Fertilizantes , Humanos
5.
Sci Total Environ ; 717: 137086, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062258

RESUMO

Co-contamination of soils with cadmium (Cd) and arsenic (As) in rice growing areas is a serious threat to environment and human health. Increase in soil Cd and As levels curtail the growth and development of rice plants by causing oxidative stress and reduction in photosynthetic activity. Therefore, it is necessary to formulate and evaluate different strategies for minimizing the Cd and As uptake in rice plant. We modified biochar (BC) with goethite and assessed the effects of goethite-modified biochar (GB) application on mitigating Cd and As stress in rice plant. Although BC supply to rice plants enhanced their performance in contaminated soil but application of different GB levels i.e.1.5% GB to the soil resulted in prominent improvements in physiological and biochemical attributes of rice plants grown in Cd and As co-contaminated paddy soil. It was observed that soil amendment with GB increased the plant growth, biomass, photosynthetic pigments, gas exchange attribute of rice plant and suppressed the oxidative stress in rice leaves and roots by increased antioxidant enzymes activities. Supplementing the soil with 1.5% GB incremented the iron plaque (Fe-plaque) formation and enhanced the Cd and As sequestration by Fe-plaque. Application of GB (1.5%) significantly improved the Fe content of Fe-plaque by 68.7%. Maximum Cd (1.57 mg kg-1) and As (0.85 mg kg-1) sequestration by Fe-plaque was observed with 1.5% GB treatment. Compared to the control, 1.5% GB treatment application prominently reduced the Cd content in the rice roots and shoots by 42.9%, and 56.7%, respectively and As content in the rice roots and shoots declined by 32.2%, 46.6%, respectively, compared to the control. These findings demonstrate that amending the soil with 1.5% GB can be a potential remediation strategy for checking Cd and As accumulation, reducing oxidative stress and increasing the growth of rice plant.


Assuntos
Oryza , Arsênio , Cádmio , Carvão Vegetal , Compostos de Ferro , Minerais , Estresse Oxidativo , Solo , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA