Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(32)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37160109

RESUMO

Hybrid nanofluids have become a popular choice for various engineering and industrial applications due to their advanced properties. This study focuses on investigating the consequences of a low oscillating magnetic field on the flow of unsteady mono and hybrid nanofluids over a vertically moving permeable disk. Initially, iron oxide nanoparticles are mixed with water to create a mono nanofluid, which is later transformed into a hybrid nanofluid by adding cobalt nanoparticles. The shape of nanoparticles used is brick-shaped, and an external magnetic field is applied to regulate the flow and heat transfer mechanism using ferromagnetic nanoparticles. Additionally, the nonlinear thermal radiative heat flux is considered for the heat transfer phenomenon. The momentum and rotational motion of the magnetic fluid caused by the rotating disk are formulated using the Shliomis fundamental concept. The numerical analysis of the ordinary differential equations (ODEs) is carried out using the bvp4c technique, and the results are presented in tabular form for the surface drag coefficient and heat transmission at the walls. Moreover, the temperature and velocity distributions are illustrated using graphical representations against relevant parameters. The findings highlight that for a constant negative value for the magnetization parameterϒ<0,the heat transfer rate for hybrid nanofluid is witnessed stronger at a volume fractionϕhnf=0.120,whereas a minimal heat transfer rate is observed for positive values of magnetization parameterϒ>0at the same value of volume fraction.

2.
Sci Rep ; 13(1): 7964, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198300

RESUMO

Carbon nanotubes (CNTs) are nanoscale tubes made of carbon atoms with unique mechanical, electrical, and thermal properties. They have a variety of promising applications in electronics, energy storage, and composite materials and are found as single-wall carbon nanotubes (SWCNTs) and double-wall carbon nanotubes (DWCNTs). Considering such alluring attributes of nanotubes, the motive of the presented flow model is to compare the thermal performance of magnetohydrodynamic (MHD) mono (SWCNTs)/Ethylene glycol) and hybrid (DWCNTs- SWCNTs/Ethylene glycol) nanofluids over a bidirectional stretching surface. The thermal efficiency of the proposed model is gauged while considering the effects of Cattaneo-Christov heat flux with prescribed heat flux (PHF) and prescribed surface temperature (PST). The flow is assisted by the anisotropic slip at the boundary of the surface. The system of partial differential equations (PDEs) is converted into a nonlinear ordinary differential system by the use of similarity transformations and handled using the bvp4c numerical technique. To depict the relationship between the profiles and the parameters, graphs, and tables are illustrated. The significant outcome revealed that the fluid temperature rises in the scenario of both PST and PHF cases. In addition, the heat transfer efficiency of the hybrid nanoliquid is far ahead of the nanofluid flow. The truthfulness of the envisioned model in the limiting scenario is also given.

3.
Sci Rep ; 12(1): 436, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013449

RESUMO

Solar thermal systems have low efficiency due to the working fluid's weak thermophysical characteristics. Thermo-physical characteristics of base fluid depend on particle concentration, diameter, and shapes. To assess a nanofluid's thermal performance in a solar collector, it is important to first understand the thermophysical changes that occur when nanoparticles are introduced to the base fluid. The aim of this study is, therefore, to analyze the hydrodynamic and heat characteristics of two different water-based hybrid nanofluids (used as a solar energy absorber) with varied particle shapes in a porous medium. As the heat transfer surface is exposed to the surrounding environment, the convective boundary condition is employed. Additionally, the flow of nanoliquid between two plates (in parallel) is observed influenced by velocity slip, non-uniform heat source-sink, linear thermal radiation. To make two targeted hybrid nanofluids, graphene is added as a cylindrical particle to water to make a nanofluid, and then silver is added as a platelet particle to the graphene/water nanofluid. For the second hybrid nanofluid, CuO spherical shape particles are introduced to the graphene/water nanofluid. The entropy of the system is also assessed. The Tiwari-Das nanofluid model is used. The translated mathematical formulations are then solved numerically. The physical and graphical behavior of significant parameters is studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA