Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Infect Dis ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487996

RESUMO

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

2.
J Immunol ; 209(7): 1323-1334, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36002235

RESUMO

Obesity is considered an important comorbidity for a range of noninfectious and infectious disease states including those that originate in the lung, yet the mechanisms that contribute to this susceptibility are not well defined. In this study, we used the diet-induced obesity (DIO) mouse model and two models of acute pulmonary infection, Francisella tularensis subspecies tularensis strain SchuS4 and SARS-CoV-2, to uncover the contribution of obesity in bacterial and viral disease. Whereas DIO mice were more resistant to infection with SchuS4, DIO animals were more susceptible to SARS-CoV-2 infection compared with regular weight mice. In both models, neither survival nor morbidity correlated with differences in pathogen load, overall cellularity, or influx of inflammatory cells in target organs of DIO and regular weight animals. Increased susceptibility was also not associated with exacerbated production of cytokines and chemokines in either model. Rather, we observed pathogen-specific dysregulation of the host lipidome that was associated with vulnerability to infection. Inhibition of specific pathways required for generation of lipid mediators reversed resistance to both bacterial and viral infection. Taken together, our data demonstrate disparity among obese individuals for control of lethal bacterial and viral infection and suggest that dysregulation of the host lipidome contributes to increased susceptibility to viral infection in the obese host.


Assuntos
COVID-19 , Francisella tularensis , Tularemia , Viroses , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Lipídeos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , SARS-CoV-2 , Viroses/metabolismo
3.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465158

RESUMO

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , COVID-19/patologia , Queratina-18/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Queratina-18/imunologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , SARS-CoV-2/fisiologia , Traqueia/imunologia , Traqueia/virologia
4.
Vet Pathol ; 59(4): 673-680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34963391

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an emergent, amphixenotic infection that resulted in a pandemic declaration in March 2020. A rapid search for appropriate animal models of this newly emergent viral respiratory disease focused initially on traditional nonhuman primate research species. Nonhuman primate models have previously been shown to be valuable in evaluation of emerging respiratory coronaviruses with pandemic potential (ie, SARS-CoV and Middle East respiratory syndrome coronavirus). In this article, we review the pulmonary histopathologic characteristics and immunohistochemical evaluation of experimental SARS-CoV-2 infection in the rhesus macaque, pigtail macaque, African green monkey, and squirrel monkey. Our results indicate that all evaluated nonhuman primate species developed variably severe histopathologic changes typical of coronavirus respiratory disease characterized by interstitial pneumonia with or without syncytial cell formation, alveolar fibrin, and pulmonary edema that progressed to type II pneumocyte hyperplasia. Lesion distribution was multifocal, frequently subpleural, and often more severe in lower lung lobes. However, squirrel monkeys showed the least severe and least consistent lesions of the evaluated nonhuman primates. Additionally, our results highlight the disparate physical relationship between viral antigen and foci of pulmonary lesions. While classic respiratory coronaviral lesions were observed in the lungs of all nonhuman primates evaluated, none of the primates exhibited severe lesions or evidence of diffuse alveolar damage and therefore are unlikely to represent the severe form of SARS-CoV-2 infection observed in fatal human cases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/veterinária , Chlorocebus aethiops , Pulmão/patologia , Macaca mulatta , Pandemias/veterinária
5.
NPJ Vaccines ; 9(1): 86, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769294

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne febrile illness with a wide geographic distribution. In recent years the geographic range of Crimean-Congo hemorrhagic fever virus (CCHFV) and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently, there are no widely available vaccines, and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Here we evaluate a promising replicating RNA vaccine in a rhesus macaque (Macaca mulatta) model of CCHF. This model provides an alternative to the established cynomolgus macaque model and recapitulates mild-to-moderate human disease. Rhesus macaques infected with CCHFV consistently exhibit viremia, detectable viral RNA in a multitude of tissues, and moderate pathology in the liver and spleen. We used this model to evaluate the immunogenicity and protective efficacy of a replicating RNA vaccine. Rhesus macaques vaccinated with RNAs expressing the CCHFV nucleoprotein and glycoprotein precursor developed robust non-neutralizing humoral immunity against the CCHFV nucleoprotein and had significant protection against the CCHFV challenge. Together, our data report a model of CCHF using rhesus macaques and demonstrate that our replicating RNA vaccine is immunogenic and protective in non-human primates after a prime-boost immunization.

6.
Front Cell Infect Microbiol ; 14: 1341891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404292

RESUMO

Lassa virus (LASV) causes an acute multisystemic hemorrhagic fever in humans known as Lassa fever, which is endemic in several African countries. This manuscript focuses on the progression of disease in cynomolgus macaques challenged with aerosolized LASV and serially sampled for the development and progression of gross and histopathologic lesions. Gross lesions were first noted in tissues on day 6 and persisted throughout day 12. Viremia and histologic lesions were first noted on day 6 commencing with the pulmonary system and hemolymphatic system and progressing at later time points to include all systems. Immunoreactivity to LASV antigen was first observed in the lungs of one macaque on day 3 and appeared localized to macrophages with an increase at later time points to include immunoreactivity in all organ systems. Additionally, this manuscript will serve as a detailed atlas of histopathologic lesions and disease progression for comparison to other animal models of aerosolized Arenaviral disease.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Animais , Febre Lassa/patologia , Macaca fascicularis , Antígenos Virais , Viremia
7.
Nat Commun ; 15(1): 9236, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455551

RESUMO

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.


Assuntos
Anticorpos Antivirais , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Nucleoproteínas , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Camundongos Knockout , Humanos , Feminino , Camundongos Endogâmicos C57BL , Vacinas Virais/imunologia , Anticorpos Neutralizantes/imunologia , Imunização Passiva
8.
EBioMedicine ; 101: 105017, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382314

RESUMO

BACKGROUND: Crimean-Congo Haemorrhagic Fever Virus is a tick-borne bunyavirus prevalent across Asia, Africa, the Middle East, and Europe. The virus causes a non-specific febrile illness which may develop into severe haemorrhagic disease. To date, there are no widely approved therapeutics. Recently, we reported an alphavirus-based replicon RNA vaccine which expresses the CCHFV nucleoprotein (repNP) or glycoprotein precursor (repGPC) and is protective against lethal disease in mice. METHODS: Here, we evaluated engineered GPC constructs to find the minimal enhancing epitope of repGPC and test two RNA vaccine approaches to express multiple antigens in vivo to optimize protective efficacy of our repRNA. FINDINGS: Vaccination with repNP and a construct expressing just the Gc antigen (repGc-FL) resulted in equivalent immunogenicity and protective efficacy compared to original repNP + repGPC vaccination. This vaccine was protective when prepared in either of two vaccine approaches, a mixed synthesis reaction producing two RNAs in a single tube and a single RNA expressing two antigens. INTERPRETATION: Overall, our data illustrate two vaccine approaches to deliver two antigens in a single immunization. Both approaches induced protective immune responses against CCHFV in this model. These approaches support their continued development for this and future vaccine candidates for CCHFV and other vaccines where inclusion of multiple antigens would be optimal. FUNDING: This work was supported by the Intramural Research Program, NIAID/NIH, HDT Bio and MCDC Grant #MCDC2204-011.

9.
Elife ; 122024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416804

RESUMO

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Masculino , Mesocricetus , Aerossóis e Gotículas Respiratórios
10.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165394

RESUMO

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Assuntos
COVID-19 , Profilaxia Pré-Exposição , Animais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais , Macaca fascicularis , DNA , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
11.
Vet Sci ; 10(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37756057

RESUMO

Coronavirus Infectious Disease 2019 (COVID-19) initiated a global pandemic that thus far has resulted in the death of over 6.5 million people internationally. Understanding the viral tropism during the initial, subclinical phase of infection is critical to develop targeted vaccines and therapeutics. With the continued emergence of variants of concern, particularly those that appear to have a tropism for the upper respiratory tract, understanding the complete pathogenesis is critical to develop more effective interventions. Thus far, the Syrian hamster has served as the most consistent small animal model of SARS-CoV-2 infection for mild to moderate respiratory disease. Herein, we utilize histopathology and immunohistochemistry to characterize the peracute phase of disease initiating at 6-h-post-inoculation in the intranasal inoculation route Syrian hamster model. Inflammation and viral replication initiates in the respiratory epithelium of nasal turbinates as early as 12-h-post-inoculation and moves caudally through the nasal cavity by 36-h-post inoculation. Lower respiratory involvement can be detected as early as 12-h-post inoculation in the intranasal inoculated hamster model. These data highlight the importance of rostral nasal cavity sampling at early timepoints for detection of SARS-CoV-2 in the Syrian hamster model.

12.
Immunohorizons ; 7(7): 528-542, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417946

RESUMO

Dysregulation of host metabolism is a feature of lethal SARS-CoV-2 infection. Perturbations in α-ketoglutarate levels can elicit metabolic reprogramming through 2-oxoglutarate-dependent dioxygenases (2-ODDGs), leading to stabilization of the transcription factor HIF-1α. HIF1-α activation has been reported to promote antiviral mechanisms against SARS-CoV-2 through direct regulation of ACE2 expression (a receptor required for viral entry). However, given the numerous pathways HIF-1α serves to regulate it is possible that there are other undefined metabolic mechanisms contributing to the pathogenesis of SARS-CoV-2 independent of ACE2 downregulation. In this study, we used in vitro and in vivo models in which HIF-1α modulation of ACE2 expression was negated, allowing for isolated characterization of the host metabolic response within SARS-CoV-2 disease pathogenesis. We demonstrated that SARS-CoV-2 infection limited stabilization of HIF-1α and associated mitochondrial metabolic reprogramming by maintaining activity of the 2-ODDG prolyl hydroxylases. Inhibition of 2-ODDGs with dimethyloxalylglycine promoted HIF-1α stabilization following SARS-CoV-2 infection, and significantly increased survival among SARS-CoV-2-infected mice compared with vehicle controls. However, unlike previous reports, the mechanism by which activation of HIF-1α responses contributed to survival was not through impairment of viral replication. Rather, dimethyloxalylglycine treatment facilitated direct effects on host metabolism including increased glycolysis and resolution of dysregulated pools of metabolites, which correlated with reduced morbidity. Taken together, these data identify (to our knowledge) a novel function of α-ketoglutarate-sensing platforms, including those responsible for HIF-1α stabilization, in the resolution of SARS-CoV-2 infection and support targeting these metabolic nodes as a viable therapeutic strategy to limit disease severity during infection.


Assuntos
COVID-19 , Dioxigenases , Camundongos , Animais , Camundongos Transgênicos , Ácidos Cetoglutáricos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2
13.
PLoS Negl Trop Dis ; 17(9): e0011620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37682988

RESUMO

Numerous arenaviruses have been identified throughout the Americas and a subset of these viruses cause viral hemorrhagic fever in humans. This study compared the pathology and viral RNA distribution in Hartley guinea pigs challenged with two human-disease causing New World arenaviruses, Junin virus (JUNV) or Guanarito virus (GTOV). Histopathologic analysis and RNA in situ hybridization revealed similar pathology and viral RNA distribution for both groups of animals challenged with either JUNV or GTOV on days 3, 7, 10 and 12 post exposure (PE). Gross lesions were first observed on day 7 and primarily involved the lungs and liver. The most severe histologic lesions occurred in the lymph nodes, spleen, and thymus and included lymphoid depletion and necrosis which increased in severity over time. Extensive necrosis was also observed in the bone marrow on day 12. Minimal to mild inflammation with and without necrosis was observed in the choroid plexus of the brain, choroid of the eye, intestinal tract, lung and adrenal gland. Significant liver lesions were rare, consisting predominantly of hepatocyte vacuolation. Viral RNA labeling was identified in nearly all organs examined, was often extensive in certain organs and generally increased over time starting on day 7. Our data demonstrate the guinea pig may serve as a useful model to study New World arenavirus infection in humans and for the evaluation and development of medical countermeasures.


Assuntos
Arenavirus do Novo Mundo , Vírus Junin , Humanos , Cobaias , Animais , RNA Viral/genética , Fígado , Encéfalo
14.
Sci Adv ; 9(36): eadj1428, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672587

RESUMO

Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.


Assuntos
Doença da Floresta de Kyasanur , Vacinas , Animais , Doença da Floresta de Kyasanur/prevenção & controle , Vacinação , Reações Cruzadas , Macaca
15.
mBio ; 14(2): e0360622, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809119

RESUMO

Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.


Assuntos
Encefalite Transmitida por Carrapatos , Humanos , Feminino , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/patologia , Inflamação , RNA Viral
16.
Antiviral Res ; 218: 105703, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611878

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) causes Crimean-Congo hemorrhagic fever (CCHF) in humans with high morbidity and mortality. Currently, there is neither an approved antiviral drug nor a vaccine against CCHFV. In this study, we describe a lethal model of CCHFV infection using a mouse-adapted strain of CCHFV (MA-CCHFV) in adult wild-type male mice. Infected mice developed high viral loads, tissue pathology, and inflammatory immune responses before ultimately succumbing to the infection. We used the model to evaluate the protective efficacy of nucleoside analogs monulpiravir, favipiravir, ribavirin, the antibiotic tigecycline and the corticosteroids dexamethasone and methylprednisolone against lethal CCHFV infection. Tigecycline, monulpiravir and the corticosteroids failed to protect mice from lethal MA-CCHFV infection. In contrast, favipiravir and ribavirin protected animals from clinical disease and death even when treatment was delayed. Despite demonstrating uniform protection, CCHFV RNA persisted in survivors treated with favipiravir and ribavirin. Nevertheless, the study demonstrated the anti-CCHFV efficacy of favipiravir and ribavirin in a model with intact innate immunity and establishes this model for continued development of CCHFV countermeasures.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Masculino , Animais , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Tigeciclina/uso terapêutico , Corticosteroides/uso terapêutico
17.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36574296

RESUMO

The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , Furões , Lactamas , Leucina , Nitrilas , Antivirais
18.
Front Immunol ; 14: 1216225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731485

RESUMO

Introduction: Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods: Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results: Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion: It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Infecções por Henipavirus , Vírus Nipah , Estomatite Vesicular , Animais , Chlorocebus aethiops , Infecções por Henipavirus/prevenção & controle , Anticorpos Neutralizantes
19.
Nat Commun ; 14(1): 6592, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852960

RESUMO

Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , SARS-CoV-2
20.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36032963

RESUMO

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA