Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7888): 235-239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880426

RESUMO

Strong periodic driving with light offers the potential to coherently manipulate the properties of quantum materials on ultrafast timescales. Recently, strategies have emerged to drastically alter electronic and magnetic properties by optically inducing non-trivial band topologies1-6, emergent spin interactions7-11 and even superconductivity12. However, the prospects and methods of coherently engineering optical properties on demand are far less understood13. Here we demonstrate coherent control and giant modulation of optical nonlinearity in a van der Waals layered magnetic insulator, manganese phosphorus trisulfide (MnPS3). By driving far off-resonance from the lowest on-site manganese d-d transition, we observe a coherent on-off switching of its optical second harmonic generation efficiency on the timescale of 100 femtoseconds with no measurable dissipation. At driving electric fields of the order of 109 volts per metre, the on-off ratio exceeds 10, which is limited only by the sample damage threshold. Floquet theory calculations14 based on a single-ion model of MnPS3 are able to reproduce the measured driving field amplitude and polarization dependence of the effect. Our approach can be applied to a broad range of insulating materials and could lead to dynamically designed nonlinear optical elements.

3.
Phys Rev Lett ; 115(15): 153002, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550720

RESUMO

By using a model based on the second-order time-dependent perturbation theory, we show that the nonsequential two-photon double ionization of He can be understood in a virtual sequential picture: to excite the final double continuum state |k_{1},k_{2}⟩ by absorbing two photons from the ground state |1s^{2},^{1}S_{0}⟩, the single continuum states |1s,k_{1}⟩ and |1s,k_{2}⟩ serve as the dominant intermediate states. This virtual sequential picture is verified by the perfect agreement of the total ionization cross section, respectively, calculated by this model and by the sophisticated numerical solution to the full-dimensional time-dependent Schrödinger equation. This model, without the consideration of the electron correlation in the final double continuum state, works well for a wide range of laser parameters extending from the nonsequential to the sequential regime. The present Letter demonstrates that the electron correlation in the final double continuum state is not important in evaluating the total cross section, while it is indispensable for an accurate computation of a triply differential cross section. In addition, the virtual sequential picture bridges the sequential and nonsequential two-photon double ionization and reveals connections and distinctions between them.

4.
Nat Commun ; 15(1): 5043, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871722

RESUMO

Microwave impedance microscopy (MIM) is an emerging scanning probe technique for nanoscale complex permittivity mapping and has made significant impacts in diverse fields. To date, the most significant hurdles that limit its widespread use are the requirements of specialized microwave probes and high-precision cancellation circuits. Here, we show that forgoing both elements not only is feasible but also enhances performance. Using monolithic silicon cantilever probes and a cancellation-free architecture, we demonstrate Johnson-noise-limited, drift-free MIM operation with 15 nm spatial resolution, minimal topography crosstalk, and an unprecedented sensitivity of 0.26 zF/√Hz. We accomplish this by taking advantage of the high mechanical resonant frequency and spatial resolution of silicon probes, the inherent common-mode phase noise rejection of self-referenced homodyne detection, and the exceptional stability of the streamlined architecture. Our approach makes MIM drastically more accessible and paves the way for advanced operation modes as well as integration with complementary techniques.

5.
Nat Commun ; 10(1): 3217, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324788

RESUMO

Over 50 years ago, Anderson and Blount proposed that ferroelectric-like structural phase transitions may occur in metals, despite the expected screening of the Coulomb interactions that often drive polar transitions. Recently, theoretical treatments have suggested that such transitions require the itinerant electrons be decoupled from the soft transverse optical phonons responsible for polar order. However, this decoupled electron mechanism (DEM) has yet to be experimentally observed. Here we utilize ultrafast spectroscopy to uncover evidence of the DEM in LiOsO3, the first known band metal to undergo a thermally driven polar phase transition (Tc ≈ 140 K). We demonstrate that intra-band photo-carriers relax by selectively coupling to only a subset of the phonon spectrum, leaving as much as 60% of the lattice heat capacity decoupled. This decoupled heat capacity is shown to be consistent with a previously undetected and partially displacive TO polar mode, indicating the DEM in LiOsO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA