Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 38(22): 5144-5148, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179089

RESUMO

MOTIVATION: The interactions among various types of cells play critical roles in cell functions and the maintenance of the entire organism. While cell-cell interactions are traditionally revealed from experimental studies, recent developments in single-cell technologies combined with data mining methods have enabled computational prediction of cell-cell interactions, which have broadened our understanding of how cells work together, and have important implications in therapeutic interventions targeting cell-cell interactions for cancers and other diseases. Despite the importance, to our knowledge, there is no database for systematic documentation of high-quality cell-cell interactions at the cell type level, which hinders the development of computational approaches to identify cell-cell interactions. RESULTS: We develop a publicly accessible database, CITEdb (Cell-cell InTEraction database, https://citedb.cn/), which not only facilitates interactive exploration of cell-cell interactions in specific physiological contexts (e.g. a disease or an organ) but also provides a benchmark dataset to interpret and evaluate computationally derived cell-cell interactions from different tools. CITEdb contains 728 pairs of cell-cell interactions in human that are manually curated. Each interaction is equipped with structured annotations including the physiological context, the ligand-receptor pairs that mediate the interaction, etc. Our database provides a web interface to search, visualize and download cell-cell interactions. Users can search for cell-cell interactions by selecting the physiological context of interest or specific cell types involved. CITEdb is the first attempt to catalogue cell-cell interactions at the cell type level, which is beneficial to both experimental, computational and clinical studies of cell-cell interactions. AVAILABILITY AND IMPLEMENTATION: CITEdb is freely available at https://citedb.cn/ and the R package implementing benchmark is available at https://github.com/shanny01/benchmark. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Comunicação Celular , Mineração de Dados , Humanos , Bases de Dados Factuais
2.
Nucleic Acids Res ; 49(D1): D254-D260, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33035346

RESUMO

Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs and play important roles in biological and physiological processes. Prediction of tRF target genes and binding sites is crucial in understanding the biological functions of tRFs in the molecular mechanisms of human diseases. We developed a publicly accessible web-based database, tRFtarget (http://trftarget.net), for tRF target prediction. It contains the computationally predicted interactions between tRFs and mRNA transcripts using the two state-of-the-art prediction tools RNAhybrid and IntaRNA, including location of the binding sites on the target, the binding region, and free energy of the binding stability with graphic illustration. tRFtarget covers 936 tRFs and 135 thousand predicted targets in eight species. It allows researchers to search either target genes by tRF IDs or tRFs by gene symbols/transcript names. We also integrated the manually curated experimental evidence of the predicted interactions into the database. Furthermore, we provided a convenient link to the DAVID® web server to perform downstream functional pathway analysis and gene ontology annotation on the predicted target genes. This database provides useful information for the scientific community to experimentally validate tRF target genes and facilitate the investigation of the molecular functions and mechanisms of tRFs.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Animais , Pareamento de Bases , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ontologia Genética , Humanos , Camundongos , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Termodinâmica , Xenopus/genética , Xenopus/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Genet Epidemiol ; 45(8): 811-820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34245595

RESUMO

Recently polygenetic risk score (PRS) has been successfully used in the risk prediction of complex human diseases. Many studies incorporated internal information, such as effect size distribution, or external information, such as linkage disequilibrium, functional annotation, and pleiotropy among multiple diseases, to optimize the performance of PRS. To leverage on multiomics datasets, we developed a novel flexible transcriptional risk score (TRS), in which messenger RNA expression levels were imputed and weighted for risk prediction. In simulation studies, we demonstrated that single-tissue TRS has greater prediction power than LDpred, especially when there is a large effect of gene expression on the phenotype. Multitissue TRS improves prediction accuracy when there are multiple tissues with independent contributions to disease risk. We applied our method to complex traits, including Crohn's disease, type 2 diabetes, and so on. The single-tissue TRS method outperformed LDpred and AnnoPred across the tested traits. The performance of multitissue TRS is trait-dependent. Moreover, our method can easily incorporate information from epigenomic and proteomic data upon the availability of reference datasets.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/genética , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteômica , Fatores de Risco
4.
Bioinformatics ; 37(24): 4737-4743, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34260700

RESUMO

MOTIVATION: Identification and interpretation of non-coding variations that affect disease risk remain a paramount challenge in genome-wide association studies (GWAS) of complex diseases. Experimental efforts have provided comprehensive annotations of functional elements in the human genome. On the other hand, advances in computational biology, especially machine learning approaches, have facilitated accurate predictions of cell-type-specific functional annotations. Integrating functional annotations with GWAS signals has advanced the understanding of disease mechanisms. In previous studies, functional annotations were treated as static of a genomic region, ignoring potential functional differences imposed by different genotypes across individuals. RESULTS: We develop a computational approach, Openness Weighted Association Studies (OWAS), to leverage and aggregate predictions of chromosome accessibility in personal genomes for prioritizing GWAS signals. The approach relies on an analytical expression we derived for identifying disease associated genomic segments whose effects in the etiology of complex diseases are evaluated. In extensive simulations and real data analysis, OWAS identifies genes/segments that explain more heritability than existing methods, and has a better replication rate in independent cohorts than GWAS. Moreover, the identified genes/segments show tissue-specific patterns and are enriched in disease relevant pathways. We use rheumatic arthritis and asthma as examples to demonstrate how OWAS can be exploited to provide novel insights on complex diseases. AVAILABILITY AND IMPLEMENTATION: The R package OWAS that implements our method is available at https://github.com/shuangsong0110/OWAS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Software , Humanos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Genômica , Biologia Computacional
5.
BMC Bioinformatics ; 20(Suppl 3): 126, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925861

RESUMO

BACKGROUND: Mapping expression quantitative trait loci (eQTLs) has provided insight into gene regulation. Compared to cis-eQTLs, the regulatory mechanisms of trans-eQTLs are less known. Previous studies suggest that trans-eQTLs may regulate expression of remote genes by altering the expression of nearby genes. Trans-association has been studied in the mediation analysis with a single mediator. However, prior applications with one mediator are prone to model misspecification due to correlations between genes. Motivated from the observation that trans-eQTLs are more likely to associate with more than one cis-gene than randomly selected SNPs in the GTEx dataset, we developed a computational method to identify trans-eQTLs that are mediated by multiple mediators. RESULTS: We proposed two hypothesis tests for testing the total mediation effect (TME) and the component-wise mediation effects (CME), respectively. We demonstrated in simulation studies that the type I error rates were controlled in both tests despite model misspecification. The TME test was more powerful than the CME test when the two mediation effects are in the same direction, while the CME test was more powerful than the TME test when the two mediation effects are in opposite direction. Multiple mediator analysis had increased power to detect mediated trans-eQTLs, especially in large samples. In the HapMap3 data, we identified 11 mediated trans-eQTLs that were not detected by the single mediator analysis in the combined samples of African populations. Moreover, the mediated trans-eQTLs in the HapMap3 samples are more likely to be trait-associated SNPs. In terms of computation, although there is no limit in the number of mediators in our model, analysis takes more time when adding additional mediators. In the analysis of the HapMap3 samples, we included at most 5 cis-gene mediators. Majority of the trios we considered have one or two mediators. CONCLUSIONS: Trans-eQTLs are more likely to associate with multiple cis-genes than randomly selected SNPs. Mediation analysis with multiple mediators improves power of identification of mediated trans-eQTLs, especially in large samples.


Assuntos
Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
6.
Cancers (Basel) ; 12(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785169

RESUMO

Effector CD8+ T cell activation and its cytotoxic function are positively correlated with improved survival in breast cancer. tRNA-derived fragments (tRFs) have recently been found to be involved in gene regulation in cancer progression. However, it is unclear how interactions between expression of tRFs and T cell activation affect breast cancer patient survival. We used Kaplan-Meier survival and multivariate Cox regression models to evaluate the effect of interactions between expression of tRFs and T cell activation on survival in 1081 breast cancer patients. Spearman correlation analysis and weighted gene co-expression network analysis were conducted to identify genes and pathways that were associated with tRFs. tRFdb-5024a, 5P_tRNA-Leu-CAA-4-1, and ts-49 were positively associated with overall survival, while ts-34 and ts-58 were negatively associated with overall survival. Significant interactions were detected between T cell activation and ts-34 and ts-49. In the T cell exhaustion group, patients with a low level of ts-34 or a high level of ts-49 showed improved survival. In contrast, there was no significant difference in the activation group. Breast cancer related pathways were identified for the five tRFs. In conclusion, the identified five tRFs associated with overall survival may serve as therapeutic targets and improve immunotherapy in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA