Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Oncol ; 12: 854448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651792

RESUMO

Background: Multiple myeloma (MM) is the second most common hematological malignancy that still lacks effective clinical treatments. In particular, MM with central nervous system (CNS) invasion occurs rarely. Although B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor-T (CAR-T) cell therapy has shown great promise for the treatment of relapsed/refractory MM, few studies have reported whether BCMA CAR-T could inhibit MM with CNS invasion. Case Presentation: In this study, we report a special case of a 63-year-old male patient who suffered MM with CNS invasion and presented rapid extramedullary disease (EMD) progression into multiple organs. Before CAR-T cell infusion, this patient received five cycles of bortezomib, Adriamycin, and dexamethasone (PAD) and an autologous transplant as the front-line treatment, followed by two cycles of bortezomib, lenalidomide, and dexamethasone (VRD) as the second-line regimen, and daratumumab, bortezomib, dexamethasone (DVD) as the third-line regimen. Since the patient still showed rapid progressive disease (PD), BCMA CAR-T cells were infused, and 1 month later, a stringent complete response (sCR) was achieved, and the response lasted for 4 months. Meanwhile, only grade 1 cytokine release syndrome (CRS) was observed. Conclusion: This case report demonstrated that BCMA CAR-T could effectively eradicate CNS-involved MM with low adverse events, suggesting that CAR-T cell therapy could be a feasible therapeutic option for this kind of refractory disease. Clinical Trial Registration: https://ClinicalTrials.gov, identifier: NCT04537442.a.

2.
J Agric Food Chem ; 67(13): 3781-3788, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865469

RESUMO

In recent decades, there have been increasing reports of insect resistance in Bacillus thuringiensis (Bt) crops. Alternative use of Cry toxins, with high insecticidal activity and different mechanisms of action, may be an important strategy to manage this resistance. Cry9 protein, with high toxicity to the lepidopteran pests and no cross-resistance with commercial Cry1 proteins, is a valuable relevant resource. A novel insecticidal protein, MP1489, subsequently named as Cry9Cb1, with 88% amino acid sequence identity with Cry9Ca1, was identified from Bt strain SP663; it exhibited high insecticidal activity against Plutella xylostella, Ostrinia furnacalis, and Chilo suppressalis and no cross-resistance with Cry1Fa in Ostrinia furnacalis. Its minimal active fragments against Plutella xylostella and Ostrinia furnacalis were identified to be 72T-657V and 68D-655A, respectively; food-safety assessment showed no sequence homology with any known allergen and rapid degradation and inactivation by both heat and the gastrointestinal environment. Therefore, Cry9Cb1 is proposed to have a brilliant prospect as an insecticidal protein in agriculture.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Dados de Sequência Molecular , Mariposas/efeitos dos fármacos
3.
Environ Entomol ; 43(3): 612-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24780240

RESUMO

The entomopathogen Bacillus thuringiensis is used to control various pest species of scarab beetle but is not particularly effective. Gut bacteria have diverse ecological and evolutionary effects on their hosts, but whether gut bacteria can protect scarabs from B. thuringiensis infection remains poorly understood. To investigate this, we isolated 32 cultivable gut bacteria from Holotrichia oblita Faldermann, Holotrichia parallela Motschulsky, and Anomala corpulenta Motschulsky, and analyzed their effect on B. thuringiensis multiplication and Cry toxin stability. 16S rDNA analysis indicated that these gut bacteria belong to the Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phyla. A confrontation culture analyses of the 32 isolates against three scarab-specific B. thuringiensis strains showed that the majority of the scarab gut bacteria had antibacterial activity against the B. thuringiensis strains. The Cry toxin stability analysis results showed that while several strains produced proteases capable of processing the scarab-specific toxin Cry8Ea, none were able to completely degrade it. These results suggest that gut bacteria can potentially affect the susceptibility of scarabs to B. thuringiensis and that this should be considered when considering future control measures.


Assuntos
Antibiose/fisiologia , Bacillus thuringiensis/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Besouros/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico , Besouros/crescimento & desenvolvimento , Endotoxinas/genética , Endotoxinas/metabolismo , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva/microbiologia , Microbiota , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA