Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(26): 7984-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26056300

RESUMO

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Profilinas/química , Linhagem Celular , Cristalografia por Raios X , Humanos , Neurônios/metabolismo , Profilinas/genética , Profilinas/metabolismo , Conformação Proteica , Dobramento de Proteína
2.
J Mol Recognit ; 30(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27859766

RESUMO

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 on the basis of computational predictions on the crystal structure of the complex and experimentally tested for in vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA-2 light chain, N52 on the LA-2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA-2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for developing prophylactic passive antibodies.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Antígenos de Superfície/química , Proteínas da Membrana Bacteriana Externa/química , Vacinas Bacterianas/química , Borrelia burgdorferi/imunologia , Epitopos/química , Lipoproteínas/química , Doença de Lyme/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/genética , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Sítios de Ligação , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Cristalografia por Raios X , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Homologia Estrutural de Proteína
3.
J Biol Chem ; 287(41): 34801-8, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22896697

RESUMO

Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.


Assuntos
5-Metilcitosina/metabolismo , Citidina Desaminase/metabolismo , DNA/metabolismo , Imunidade Inata , Proteínas/metabolismo , 5-Metilcitosina/imunologia , Citidina Desaminase/imunologia , DNA/imunologia , Desaminação , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/imunologia , Células HEK293 , Humanos , Interferons/imunologia , Interferons/farmacologia , Plasmídeos/imunologia , Plasmídeos/farmacologia , Proteínas/imunologia , Timina/imunologia , Timina/metabolismo , Uracila/imunologia , Uracila/metabolismo
4.
Proteins ; 69(2): 270-84, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17598142

RESUMO

HIV-1 Vif, an accessory protein in the viral genome, performs an important role in viral pathogenesis by facilitating the degradation of APOBEC3G, an endogenous cellular inhibitor of HIV-1 replication. In this study, intrinsically disordered regions are predicted in HIV-1 Vif using sequence-based algorithms. Intrinsic disorder may explain why traditional structure determination of HIV-1 Vif has been elusive, making structure-based drug design impossible. To characterize HIV-1 Vif's structural topology and to map the domains involved in oligomerization we used chemical cross-linking, proteolysis, and mass spectrometry. Cross-linking showed evidence of monomer, dimer, and trimer species via denaturing gel analysis and an additional tetramer via western blot analysis. We identified 47 unique linear peptides and 24 (13 intramolecular; 11 intermolecular) noncontiguous, cross-linked peptides, among the noncross-linked monomer, cross-linked monomer, cross-linked dimer, and cross-linked trimer samples. Almost complete peptide coverage of the N-terminus is observed in all samples analyzed, however reduced peptide coverage in the C-terminal region is observed in the dimer and trimer samples. These differences in peptide coverage or "protections" between dimer and trimer indicate specific differences in packing between the two oligomeric forms. Intramolecular cross-links within the monomer suggest that the N-terminus is likely folded into a compact domain, while the C-terminus remains intrinsically disordered. Upon oligomerization, as evidenced by the intermolecular cross-links, the C-terminus of one Vif protein becomes ordered by wrapping back on the N-terminal domain of another. In addition, the majority of the intramolecular cross-links map to regions that have been previously reported to be necessary for viral infectivity. Thus, this data suggests HIV-1 Vif is in a dynamic equilibrium between the various oligomers potentially allowing it to interact with other binding partners.


Assuntos
Produtos do Gene vif/química , Produtos do Gene vif/metabolismo , HIV-1/química , HIV-1/patogenicidade , Desaminase APOBEC-3G , Reagentes de Ligações Cruzadas/metabolismo , Citidina Desaminase/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Valor Preditivo dos Testes , Ligação Proteica/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
5.
Nat Commun ; 8: 15024, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452355

RESUMO

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.


Assuntos
Domínio Catalítico , Citidina Desaminase/química , Citidina/química , DNA de Cadeia Simples/química , Proteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Citidina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Desaminação , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas/genética , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
FEBS J ; 283(1): 112-29, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26460502

RESUMO

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Peptídeos/farmacologia , Desaminase APOBEC-3G , Biocatálise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citidina Desaminase/metabolismo , DNA/metabolismo , Humanos , Cinética
7.
Nat Struct Mol Biol ; 22(6): 485-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25984970

RESUMO

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by Vif; this enabled mutagenesis and biochemical experiments, which identified a unique Vif-interacting surface formed by the α1-ß1, ß2-α2 and ß4-α4 loops. This structure sheds new light on the Vif-A3G interaction and provides critical information for future drug development.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Citidina Desaminase/genética , Análise Mutacional de DNA , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas
8.
Structure ; 23(5): 903-911, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25914058

RESUMO

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface provides insights into how cooperative protein-protein interactions may affect function in the APOBEC3 enzymes and provides a potential scaffold for strategies aimed at reducing their mutation load.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citidina Desaminase/genética , Dimerização , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Especificidade por Substrato , Zinco/metabolismo
9.
Virology ; 471-473: 105-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461536

RESUMO

APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn(2+) coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design.


Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminases APOBEC , Sequência de Aminoácidos , Citidina Desaminase , Regulação da Expressão Gênica , Humanos , Potenciais da Membrana , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática
10.
Elife ; 32014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24935936

RESUMO

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon ω-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between ω-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Ácido Oleico/química , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Sítio Alostérico , Motivos de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Simulação de Dinâmica Molecular , Células-Tronco Pluripotentes/citologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Relação Estrutura-Atividade
11.
Structure ; 21(6): 1042-50, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23685212

RESUMO

Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.


Assuntos
Citosina Desaminase/metabolismo , HIV-1/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Catálise , Cristalografia por Raios X , Citosina Desaminase/química , Modelos Moleculares , Conformação Proteica
12.
ACS Chem Biol ; 7(3): 506-17, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22181350

RESUMO

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Desaminase APOBEC-3G , Células Cultivadas , Cristalografia por Raios X , Citidina Desaminase/isolamento & purificação , Citidina Desaminase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Integrase de HIV/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
13.
Structure ; 18(1): 28-38, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20152150

RESUMO

APOBEC3G is a DNA cytidine deaminase that has antiviral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 A. This structure corroborates features previously observed in nuclear magnetic resonance (NMR) studies, a bulge in the second beta strand and a lengthening of the second alpha helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed, suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and disruptive variants were designed and tested for DNA deaminase and anti-HIV activities. The variant designed to disrupt the most extensive interface lost both activities. NMR solution data provides evidence that another interface, which coordinates a novel zinc site, also exists. Thus, the observed crystallographic interfaces of APOBEC3G may be important for both oligomerization and function.


Assuntos
Domínio Catalítico , Citidina Desaminase/química , Desaminase APOBEC-3G , Sequência de Aminoácidos , Citidina Desaminase/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA