Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
BMC Plant Biol ; 23(1): 179, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020180

RESUMO

BACKGROUND: Upland cotton (Gossypium hirsutum L.) is the most economically important species in the cotton genus (Gossypium spp.). Enhancing the cotton yield is a major goal in cotton breeding programs. Lint percentage (LP) and boll weight (BW) are the two most important components of cotton lint yield. The identification of stable and effective quantitative trait loci (QTLs) will aid the molecular breeding of cotton cultivars with high yield. RESULTS: Genotyping by target sequencing (GBTS) and genome-wide association study (GWAS) with 3VmrMLM were used to identify LP and BW related QTLs from two recombinant inbred line (RIL) populations derived from high lint yield and fiber quality lines (ZR014121, CCRI60 and EZ60). The average call rate of a single locus was 94.35%, and the average call rate of an individual was 92.10% in GBTS. A total of 100 QTLs were identified; 22 of them were overlapping with the reported QTLs, and 78 were novel QTLs. Of the 100 QTLs, 51 QTLs were for LP, and they explained 0.29-9.96% of the phenotypic variation; 49 QTLs were for BW, and they explained 0.41-6.31% of the phenotypic variation. One QTL (qBW-E-A10-1, qBW-C-A10-1) was identified in both populations. Six key QTLs were identified in multiple-environments; three were for LP, and three were for BW. A total of 108 candidate genes were identified in the regions of the six key QTLs. Several candidate genes were positively related to the developments of LP and BW, such as genes involved in gene transcription, protein synthesis, calcium signaling, carbon metabolism, and biosynthesis of secondary metabolites. Seven major candidate genes were predicted to form a co-expression network. Six significantly highly expressed candidate genes of the six QTLs after anthesis were the key genes regulating LP and BW and affecting cotton yield formation. CONCLUSIONS: A total of 100 stable QTLs for LP and BW in upland cotton were identified in this study; these QTLs could be used in cotton molecular breeding programs. Putative candidate genes of the six key QTLs were identified; this result provided clues for future studies on the mechanisms of LP and BW developments.


Assuntos
Gossypium , Mapeamento Cromossômico , Fibra de Algodão , Estudo de Associação Genômica Ampla , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
2.
Theor Appl Genet ; 136(3): 48, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912959

RESUMO

KEY MESSAGE: The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.


Assuntos
Gossypium , Locos de Características Quantitativas , Humanos , Gossypium/genética , Mapeamento Cromossômico/métodos , Fenótipo , Melhoramento Vegetal , Fibra de Algodão , Estudos de Associação Genética
3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068920

RESUMO

Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.


Assuntos
Óleo de Sementes de Algodão , Locos de Características Quantitativas , Humanos , Óleo de Sementes de Algodão/metabolismo , Óleos de Plantas , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodão
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239883

RESUMO

Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.


Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo
5.
Theor Appl Genet ; 135(2): 449-460, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34714356

RESUMO

KEY MESSAGE: Based on the integration of QTL-mapping and regulatory network analyses, five high-confidence stable QTL regions, six candidate genes and two microRNAs that potentially affect the cottonseed oil content were discovered. Cottonseed oil is increasingly becoming a promising target for edible oil with its high content of unsaturated fatty acids. In this study, a recombinant inbred line (RIL) cotton population was constructed to detect quantitative trait loci (QTLs) for the cottonseed oil content. A total of 39 QTLs were detected across eight different environments, of which five QTLs were stable. Forty-three candidate genes potentially involved in carbon metabolism, fatty acid synthesis and triacylglycerol biosynthesis processes were further obtained in the stable QTL regions. Transcriptome analysis showed that nineteen of these candidate genes expressed during  the developing cottonseed ovules and may affect the cottonseed oil content. Besides, transcription factor (TF) and microRNA (miRNA) co-regulatory network analyses based on the nineteen candidate genes suggested that six genes, two core miRNAs (ghr-miR2949b and ghr-miR2949c), and one TF GhHSL1 were considered to be closely associated with the cottonseed oil content. Moreover, four vital genes were validated by quantitative real-time PCR (qRT-PCR). These results provide insights into the oil accumulation mechanism in developing cottonseed ovules through the construction of a detailed oil accumulation model.


Assuntos
Óleo de Sementes de Algodão , Gossypium , Mapeamento Cromossômico , Óleo de Sementes de Algodão/metabolismo , Gossypium/genética , Gossypium/metabolismo , Locos de Características Quantitativas
6.
Theor Appl Genet ; 135(9): 3223-3235, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904626

RESUMO

KEY MESSAGE: In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Mapeamento Cromossômico , Produtos Agrícolas/genética , Patrimônio Genético , Gossypium/genética , Vigor Híbrido , Fenótipo
7.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216157

RESUMO

Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein-protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Variação Genética , Gossypium/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012463

RESUMO

As the core of heterosis utilization, cytoplasmic male sterility (CMS) has been widely used in hybrid seed production. Previous studies have shown that CMS is always closely related to the altered programming of mitochondrial genes. To explore candidate CMS genes in cotton (Gossypium hirsutum), sequencing and de novo assembly were performed on the mitochondrial genome of the G. hirsutum CMS line SI3A, with G. harknessii CMS-D2 cytoplasm, and the corresponding G. hirsutum restorer line 0-613-2R. Remarkable variations in genome structure and gene transcripts were detected. The mitochondrial genome of SI3A has three circle molecules, including one main circle and two sub-circles, while 0-613-2R only has one. RNA-seq and RT-qPCR analysis proved that orf606a and orf109a, which have a chimeric structure and transmembrane domain, were highly expressed in abortive anthers of SI3A. In addition, comparative analysis of RNA-seq and full-length transcripts revealed the complex I gene nad4 to be expressed at a lower level in SI3A than in its restorer and that it featured an intron retention splicing pattern. These two novel chimeric ORFs and nad4 are potential candidates that confer CMS character in SI3A. This study provides new insight into the molecular basis of the nuclear-cytoplasmic interaction mechanism, and that putative CMS genes might be important sources for future precise design cross-breeding of cotton.


Assuntos
Genoma Mitocondrial , Gossypium , Citoplasma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Melhoramento Vegetal , Infertilidade das Plantas/genética
9.
BMC Genomics ; 22(1): 85, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509085

RESUMO

BACKGROUND: Wall-associated kinases (WAK), one of the receptor-like kinases (RLK), function directly in the connection and communication between the plant cell wall and the cytoplasm. WAK genes are highly conserved and have been identified in plants, such as rice, but there is little research on the WAK gene family in cotton. RESULTS: In the present study, we identified 29 GhWAK genes in Gossypium hirsutum. Phylogenetic analysis showed that cotton WAK proteins can be divided into five clades. The results of synteny and Ka/Ks analysis showed that the GhWAK genes mainly originated from whole genome duplication (WGD) and were then mainly under purifying selection. Transcriptome data and real-time PCR showed that 97% of GhWAK genes highly expressed in cotton fibers and ovules. ß-glucuronidase (GUS) staining assays showed that GhWAK5 and GhWAK16 expressed in Arabidopsis leaf trichomes. Fourteen GhWAK genes were found to possess putative gibberellin (GA) response elements in the promoter regions, 13 of which were significantly induced by GA treatment. Ten GhWAK genes contained auxin (IAA) response elements and the expression level of nine GhWAKs significantly increased under auxin treatment. CONCLUSIONS: We provide a preliminary analysis of the WAK gene family in G. hirsutum, which sheds light on the potantial roles of GhWAK genes in cotton fiber cell development. Our data also provides a useful resource for future studies on the functional roles of GhWAK genes.


Assuntos
Gossypium , Reguladores de Crescimento de Plantas , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética
10.
Plant Biotechnol J ; 19(3): 548-562, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32981232

RESUMO

The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease resistance and yield. Although many genes regulating leaf development have been identified in the past years, the precise regulatory architecture underlying the generation of diverse leaf shapes remains to be elucidated. We used cotton as a reference model to probe the genetic framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that the GhARF16-1 and GhKNOX2-1 genes might be potential regulators of leaf shape. We functionally characterized the auxin-responsive factor ARF16-1 acting upstream of GhKNOX2-1 to determine leaf morphology in cotton. The transcription of GhARF16-1 was significantly higher in lobed-leaved cotton than in smooth-leaved cotton. Furthermore, the overexpression of GhARF16-1 led to the up-regulation of GhKNOX2-1 and resulted in more and deeper serrations in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2-1. We found that GhARF16-1 specifically bound to the promoter of GhKNOX2-1 to induce its expression. The heterologous expression of GhARF16-1 and GhKNOX2-1 in Arabidopsis led to lobed and curly leaves, and a genetic analysis revealed that GhKNOX2-1 is epistatic to GhARF16-1 in Arabidopsis, suggesting that the GhARF16-1 and GhKNOX2-1 interaction paradigm also functions to regulate leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which auxin, through the key component ARF16-1 and its downstream-activated gene KNOX2-1, determines leaf morphology in eudicots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Folhas de Planta/genética
11.
Anal Bioanal Chem ; 413(5): 1313-1320, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33404744

RESUMO

This study aimed to use micro-FTIR with transmission mode to investigate cellulose crystallinity of developing cotton fibers. Compared with ATR-FTIR method, we found that micro-FTIR can obtain more information of cellulose inside of the developing cotton fibers, especially in high wavenumber of 2800-3000 cm-1 region. Combined with curve fitting method, a new IR crystallinity index (CI) method named wax crystallinity index (WCI) was introduced to evaluate the cellulose crystallinity in the development of cotton fibers based on the peak and area ratios of 2900 cm-1/2850 cm-1 and 2900 cm-1/2920 cm-1. The obtained WCI values demonstrated an excellent coefficient of determination with X-ray diffraction (XRD) CI method with the value up to 0.99. This study suggested that micro-FTIR was an effective technique to qualitatively analyze the crystallinity in developing cotton fibers combined with curve fitting method.


Assuntos
Celulose/análise , Fibra de Algodão/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cristalização , Difração de Raios X
12.
Plant Biotechnol J ; 18(1): 239-253, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199554

RESUMO

Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty-seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA-Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu-chr13-2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.


Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Marcadores Genéticos , Fenótipo , Melhoramento Vegetal , RNA-Seq
13.
J Exp Bot ; 71(22): 6988-7002, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32926130

RESUMO

Seed oil traits in soybean that are of benefit to human nutrition and health have been selected for during crop domestication. However, these domesticated traits have significant differences across various evolutionary types. In this study, we found that the integration of evolutionary population structure (evolutionary types) with genome-wide association studies increased the power of gene detection, and it identified one locus for traits related to seed size and oil content on chromosome 13. This domestication locus, together with another one in a 200-kb region, was confirmed by the GEMMA and EMMAX software. The candidate gene, GmPDAT, had higher expressional levels in high-oil and large-seed accessions than in low-oil and small-seed accessions. Overexpression lines had increased seed size and oil content, whereas RNAi lines had decreased seed size and oil content. The molecular mechanism of GmPDAT was deduced based on results from linkage analysis for triacylglycerols and on histocytological comparisons of transgenic soybean seeds. Our results illustrate a new approach for identifying domestication genes with pleiotropic effects.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Domesticação , Locos de Características Quantitativas/genética , Sementes/genética , Glycine max/genética
14.
Theor Appl Genet ; 133(7): 2075-2093, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32185421

RESUMO

KEY MESSAGE: Background-independent (BI) and stably expressed (SE) quantitative trait loci (QTLs) were identified using two sets of introgression lines across multiple environments. Genetic background more greatly affected fiber quality traits than environmental factors. Sixty-one SE-QTLs, including two BI-QTLs, were novel and 48 SE-QTLs, including seven BI-QTLs, were previously reported. Cotton fiber quality traits are controlled by QTLs and are susceptible to environmental influence. Fiber quality improvement is an essential goal in cotton breeding but is hindered by limited knowledge of the genetic basis of fiber quality traits. In this study, two sets of introgression lines of Gossypium hirsutum × G. barbadense were used to dissect the QTL stability of three fiber quality traits (fiber length, strength and micronaire) across environments using 551 simple sequence repeat markers selected from our high-density genetic map. A total of 76 and 120 QTLs were detected in the CCRI36 and CCRI45 backgrounds, respectively. Nine BI-QTLs were found, and 78 (41.71%) of the detected QTLs were reported previously. Thirty-nine and 79 QTLs were SE-QTLs in at least two environments in the CCRI36 and CCRI45 backgrounds, respectively. Forty-eight SE-QTLs, including seven BI-QTLs, were confirmed in previous reports, and 61 SE-QTLs, including two BI-QTLs, were considered novel. These results indicate that genetic background more strongly impacts on fiber quality traits than environmental factors. Twenty-three clusters with BI- and/or SE-QTLs were identified, 19 of which harbored favorable alleles from G. barbadense for two or three fiber quality traits. This study is the first report using two sets of introgression lines to identify fiber quality QTLs across environments in cotton, providing insights into the effect of genetic backgrounds and environments on the QTL expression of fiber quality and important information for the genetic basis underlying fiber quality traits toward QTL cloning and molecular breeding.


Assuntos
Mapeamento Cromossômico , Fibra de Algodão , Ligação Genética , Gossypium/genética , Locos de Características Quantitativas , Alelos , Cruzamentos Genéticos , Genoma de Planta , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal
15.
BMC Plant Biol ; 19(1): 19, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634907

RESUMO

BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.


Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Gossypium/microbiologia , Transcriptoma/genética , Verticillium/patogenicidade , Regulação da Expressão Gênica de Plantas/genética
16.
Mol Genet Genomics ; 294(5): 1123-1136, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31030276

RESUMO

Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.


Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Fibra de Algodão , Cruzamentos Genéticos , Genoma de Planta/genética , Fenótipo
17.
Mol Genet Genomics ; 294(6): 1385-1402, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31201519

RESUMO

Fiber quality and yield are important traits of cotton. Quantitative trait locus (QTL) mapping is a prerequisite for marker-assisted selection (MAS) in cotton breeding. To identify QTLs for fiber quality and yield traits, 4 backcross-generation populations (BC1F1, BC1S1, BC2F1, and BC3F0) were developed from an interspecific cross between CCRI36 (Gossypium hirsutum L.) and Hai1 (G. barbadense L.). A total of 153 QTLs for fiber quality and yield traits were identified based on data from the BC1F1, BC1S1, BC2F1 and BC3F0 populations in the field and from the BC2F1 population in an artificial disease nursery using a high-density genetic linkage map with 2292 marker loci covering 5115.16 centimorgans (cM) from the BC1F1 population. These QTLs were located on 24 chromosomes, and each could explain 4.98-19.80% of the observed phenotypic variations. Among the 153 QTLs, 30 were consistent with those identified previously. Specifically, 23 QTLs were stably detected in 2 or 3 environments or generations, 6 of which were consistent with those identified previously and the other 17 of which were stable and novel. Ten QTL clusters for different traits were found and 9 of them were novel, which explained the significant correlations among some phenotypic traits in the populations. The results including these stable or consensus QTLs provide valuable information for marker-assisted selection (MAS) in cotton breeding and will help better understand the genetic basis of fiber quality and yield traits, which can then be used in QTL cloning.


Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Cruzamentos Genéticos , Gossypium/embriologia , Sementes/genética
18.
BMC Genomics ; 18(1): 705, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886694

RESUMO

BACKGROUND: How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. RESULTS: In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. CONCLUSIONS: The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs.


Assuntos
Cromossomos de Plantas/genética , Fibra de Algodão , Perfilação da Expressão Gênica , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Hibridização Genética , Parede Celular/metabolismo , Gossypium/citologia , Fenótipo , Reprodutibilidade dos Testes
19.
BMC Genomics ; 17(1): 877, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27814678

RESUMO

BACKGROUND: Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. RESULTS: In the present study, BC1F1, BC1S1, and BC2F1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC1F1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC2F1 in the artificial disease nursery and one date of BC1S1 and BC2F1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. CONCLUSIONS: These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant cotton. It may also lay an important foundation for gene cloning and further molecular design breeding for the entire cotton genome.


Assuntos
Cruzamentos Genéticos , Resistência à Doença/genética , Gossypium/genética , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Verticillium , Mapeamento Cromossômico , Ligação Genética , Genética Populacional , Fenótipo
20.
BMC Genomics ; 17(1): 1000, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927181

RESUMO

BACKGROUND: Pectin methylesterase (PME, EC 3.1.1.11) is a hydrolytic enzyme that utilizes pectin as substrates, and plays a significant role in regulating pectin reconstruction thereby regulating plant growth. Pectin is one of the important components of the plant cell wall, which forms the main structural material of cotton fiber. In this research, cotton genome information was used to identify PMEs. RESULTS: We identified 80 (GaPME01-GaPME80) PME genes from diploid G. arboreum (A genome), 78 (GrPME01-GrPME78) PME genes from G. raimondii (D genome), and 135 (GhPME001-GhPME135) PME genes from tetraploid cotton G. hirsutum (AD genome). We further analyzed their gene structure, conserved domain, gene expression, and systematic evolution to lay the foundation for deeper research on the function of PMEs. Phylogenetic data indicated that members from the same species demonstrated relatively high sequence identities and genetic similarities. Analysis of gene structures showed that most of the PMEs genes had 2-3 exons, with a few having a variable number of exons from 4 to 6. There are nearly no differences in the gene structure of PMEs among the three (two diploid and one tetraploid) cotton species. Selective pressure analysis showed that the Ka/Ks value for each of the three cotton species PME families was less than one. CONCLUSION: Conserved domain analysis showed that PMEs members had a relatively conserved C-terminal pectinesterase domain (PME) while the N-terminus was less conserved. Moreover, some of the family members contained a pectin methylesterase inhibitor (PMEI) domain. The Ka/Ks ratios suggested that the duplicated PMEs underwent purifying selection after the duplication events. This study provided an important basis for further research on the functions of cotton PMEs. Results from qRT-PCR indicated that the expression level of different PMEs at various fiber developmental stages was different. Moreover, some of the PMEs showed fiber predominant expression in secondary wall thickening indicating tissue-specific expression patterns.


Assuntos
Hidrolases de Éster Carboxílico/genética , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/classificação , Gossypium/genética , Filogenia , Hidrolases de Éster Carboxílico/metabolismo , Análise por Conglomerados , Ativação Enzimática , Perfilação da Expressão Gênica , Família Multigênica , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA