Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 20(2): e2305736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661361

RESUMO

Though Sn-Pb alloyed perovskite solar cells (PSCs) achieved great progress, there is a dilemma to further increase Sn for less-Pb requirement. High Sn ratio (>70%) perovskite exhibits nonstoichiometric Sn:Pb:I at film surface to aggravate Sn2+ oxidation and interface energy mismatch. Here, ternary metal alloyed (FASnI3 )0.7 (MAPb1- x Znx I3 )0.3 (x = 0-3%) is constructed for Pb% < 30% perovskite. Zn with smaller ionic size and stronger ionic interaction than Sn/Pb assists forming high-quality perovskite film with ZnI6 4- enriched at surface to balance Sn:Pb:I ratio. Differing from uniform bulk doping, surface-rich Zn with lower lying orbits pushes down the energy band of perovskite and adjusts the interface energy for efficient charge transfer. The alloyed PSC realizes efficiency of 19.4% at AM1.5 (one of the highest values reported for Pb% < 30% PSCs). Moreover, stronger bonding of Zn─I and Sn─I contributes to better durability of ternary perovskite than binary perovskite. This work highlights a novel alloy method for efficient and stable less-Pb PSCs.

2.
Small ; 19(25): e2207755, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932932

RESUMO

The layered quasi-2D perovskites are recognized as one of the effective strategies to resolve the big problem of intrinsic phase instability of the perovskites. However, in such configurations, their performance is fundamentally limited due to the correspondingly weakened out-of-plane charge mobility. Herein, the π-conjugated p-phenylenediamine (PPDA) is introduced as organic ligand ions for rationally designing lead-free and tin-based 2D perovskites with the aid of theoretical computation. It is evidenced that both out-of-plane charge transport capacity and stability can be significantly enhanced within as-established quasi-2D Dion-Jacobson (DJ) (PPDA)Csn -1 Snn I3 n +1 perovskites. The obviously increased electrical conductivity and reduced carrier effective masses are attributed to the enhanced interlayer interactions, limited structural distortions of diamine cations, as well as improved orbital coupling between Sn2+ and I- ions of (PPDA)Csn -1 Snn I3 n +1 perovskites. Accordingly, by dimension engineering of the inorganic layer (n), the bandgap (Eg ) of quasi-2D perovskites can be linearly tailored toward the suitable Eg (1.387 eV) with optimal photoelectric conversion efficiency (PCE) of 18.52%, representing their great potential toward promising applications in advanced solar cells.

3.
Chemistry ; 21(33): 11878-84, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26129704

RESUMO

We report the synthesis and anode application for sodium-ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as-prepared WS2 NWs were evaluated as anode materials of SIBs in two potential windows of 0.01-2.5 V and 0.5-3 V. WS2 NWs displayed a remarkable capacity (605.3 mA h g(-1) at 100 mA g(-1) ) but with irreversible conversion reaction in the potential window of 0.01-2.5 V. In comparison, WS2 NWs showed a reversible intercalation mechanism in the potential window of 0.5-3 V, in which the nanowire-framework is well maintained. In the latter case, the interlayers of WS2 are gradually expanded and exfoliated during repeated charge-discharge cycling. This not only provides more active sites and open channels for the intercalation of Na(+) but also facilitates the electronic and ionic diffusion. Therefore, WS2 NWs exhibited an ultra-long cycle life with high capacity and rate capability in the potential window of 0.5-3 V. This study shows that WS2 NWs are promising as the anode materials of room-temperature SIBs.

4.
Anal Chem ; 85(7): 3739-45, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23441983

RESUMO

Recoil effects in valence band X-ray photoelectron spectroscopy (XPS) are studied for both abb-trifluorostyrene and styrene molecular crystal systems. The gradual changes of XPS spectra excited by several photon energies are theoretically investigated within the tight-binding approximation and harmonic approximation of lattice vibrations and have been explained in terms of not only atomic mass but also atomic orbital (AO) population. The recoil effect of valence band photoemission strongly depends on the population and partial photoionization cross section (PICS) of AOs as well as the masses of composite atoms. In abb-trifluorostyrene F 2p dominant bands show the recoil shift close to free F atom recoil shift, and C 2s dominant bands show that to free C atom recoil shift, whereas the mixed bands of C and F give rise to the peak asymmetries due to their different recoil shifts. For these systems, hydrogen contribution is negligibly small which is in contrast to our previous results for the crystals composed of small organic molecules. We also discuss some potential uses of the recoil shifts for these systems.

5.
Mater Horiz ; 10(7): 2691-2697, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144424

RESUMO

Surface passivation is one of the effective and widely-used strategies to enhance the stability of halide perovskites with reduced surface defects and suppressed hysteresis. Among all existing reports, the formation and adsorption energies are popularly used as the decisive descriptors for screening passivators. Here, we propose that the often-ignored local surface structure should be another critically important factor governing the stability of tin-based perovskites after surface passivation, but has no detrimental effect on the stability of lead-based perovskites. It is verified that poor surface structure stability and deformation of the chemical bonding framework of Sn-I caused by surface passivation are ascribed to the weakened Sn-I bond strength and facilitated formation of surface iodine vacancy (VI). Therefore, the surface structure stability represented by the formation energy of VI and Sn-I bond strength should be used to accurately screen preferred surface passivators of tin-based perovskites.

6.
J Phys Chem Lett ; 14(29): 6592-6600, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37459115

RESUMO

Generally, the 2D CsPbI3 layer capping on 3D counterparts has been considered as an effective strategy for both enhancing photovoltaic efficiency and stability. However, the intrinsically poor out-of-plane charge transport through the 2D layer remarkably hinders the overall performance of solar devices. To overcome such a challenge, we report the rationally designed 3D-CsPbI3/2D-(PYn)PbI4 (n = 1-4) heterojunctions with desirable energy level matching. It is evidenced that the valence band (VB) edge reconfiguration would occur with the increase of n, accompanied by the VB maximum (VBM) of the 2D component moving down from the higher level above that of the 3D component to the underneath. Consequently, the as-constructed 3D/2D-(PYn)PbI4 (n = 1, 2) heterojunctions exhibit optimal energy level matching, with accelerated transport of holes from 3D to 2D component and limited backflow of electrons. These findings might provide some meaningful insights on the energy level matching in 3D/2D perovskite heterojunctions.

7.
J Phys Chem Lett ; 14(32): 7331-7339, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37561067

RESUMO

Two-dimensional (2D) halide perovskites are promising candidates for the fabrication of stable and high-efficiency solar cells. However, the low power conversion efficiency (PCE) of cell devices using 2D perovskites is attributed to reduced charge transport caused by poor organic barrier conductivity. In this study, we propose the use of a high-polarized organic zwitterionic spacer, p-aminobenzoic acid (PABA), to construct novel quasi-2D perovskite structures with enhanced self-driven charge separation and transfer. The NH3+ and COO- groups in PABA generate an aligned electric field, promoting carrier separation and aggregation on the opposite edges of the inorganic layer. This enables efficient in-plane transportation along the inorganic layer. Additionally, PABA intercalated quasi-2D perovskite exhibits improved stability compared with counterparts with diamine cation spacers due to the strong interaction between -COO- and inorganic layers. Our findings suggest that high-polarized organic zwitterionic spacers, with NH3+ and COO- functionality, hold promise for stable and efficient quasi-2D perovskite solar cells.

8.
ACS Appl Mater Interfaces ; 15(36): 42697-42705, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650768

RESUMO

Metal halide perovskite solar cells (PSCs) have recently made significant progress with power conversion efficiencies (PCEs) boosted from 3.8% to a certified one over 26.1%, partially benefiting from the high-quality perovskite film enabled by the effective one-step spin-coating route. However, an extra antisolvent step with poor controllability and producibility is often involved in such a process, and some intrinsic defects are generated inevitably, especially in ambient atmospheric conditions, thus fundamentally limiting the commercialization of PSCs. Here, we introduce 1,1'dimethyl ferrocene into methylammonium lead halide precursor, which could not only recover the defects within perovskite film but also simplify the process without the extra antisolvent step. Accordingly, a dense and uniform perovskite film with large grains has been obtained under ambient conditions, which has much lower defect density, better stability against moisture penetration, and enhanced thermal tolerance than the control one, delivering a champion PCE of 16.92%. Current work sheds light on the simplified air-processed strategy for high-quality perovskite films, which might pave the way for exploring efficient and stable PSCs toward industrial applications.

9.
J Hazard Mater ; 447: 130777, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36689901

RESUMO

Developing electrode materials with excellent electrocatalytic properties for detecting pesticide residues plays a vital role in the safety of agricultural products and environmental applications. Herein, we designed a new electrochemical sensor on the basis of N-doped carbon hollow nanospheres modified with Sn/MoC Schottky junction (Sn/MoC@NC) for methyl parathion (MP) detection. The Sn/MoC@NC was prepared by self-assembled polymerization-anchoring strategy and high-temperature carbonization design. Sn/MoC Schottky junction and hollow nanosphere structure endow Sn/MoC@NC with a larger surface area, more active sites, and faster electron transfer, which is beneficial to enhancing its electrocatalytic performance. The structural characterizations and physicochemical properties of Sn/MoC@NC were explored through various microscopy, spectroscopic and electrochemical techniques. The experimental results confirmed that the calibration curve for current and MP concentration (0.05-10 µg/mL) was available under optimized conditions, and the sensitivity and detection limit were respectively determined to be 9.02 µA µM1 cm2 and 8.9 ng/mL. Furthermore, the constructed sensor displayed excellent selectivity, repeatability, and stability, which qualified it for use in detecting MP in grapes and tap water with satisfactory recovery. This work may provide some interesting prospects for constructing high-performance electrocatalysts for MP detection.

10.
Food Chem ; 374: 131768, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34891086

RESUMO

Nitrite (NO2-) is widely present in the human environment and accurate, sensitive and selective detecting of nitrite is of vital significance for food safety and water quality. Herein, a novel red emission carbon dots (r-CDs) fluorescent probe was fabricated for dual-mode detection of nitrite, which was capable of both convenient colorimetric analysis and accurate fluorometric detection. When NO2- is added to the rose-red r-CDs solution, NO2- interacts with the amino groups which on the surface of r-CDs to form diazotized substance, resulting in that the colorimetric color of r-CDs solution realizes the transition from rose red to light purple, and the red fluorescence is gradually quenched. The detection limits of colorimetric and fluorescence for NO2- were 0.193 µM and 0.149 µM, respectively. Furthermore, the dual-readout probe revealed satisfactory recovery and reliability when analyzing the concentration of NO2- in ham and bacon samples..


Assuntos
Produtos da Carne , Pontos Quânticos , Carbono , Colorimetria , Corantes Fluorescentes , Humanos , Produtos da Carne/análise , Nitritos , Reprodutibilidade dos Testes
11.
Carbohydr Polym ; 294: 119779, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868755

RESUMO

Nano-delivery systems play an important role in the development of nutritional supplements due to their efficient encapsulation and delivery properties for nutrients. Herein, we prepared protein-polysaccharide nanoparticles as a novel amphiphilic nano-delivery system based on gallic acid modified chitosan (GCS) and ovalbumin (OVA) by pH-driven and calcium ion crosslinking. The nanoparticles loaded with hydrophilic riboflavin (Rib) and hydrophobic quercetin (Que) as nutrient models were abbreviated as GCS-OVA-Rib NPs and GCS-OVA-Que NPs, respectively. Their encapsulation efficiencies for Rib and Que. were 66.36 % and 96.61 %, respectively. In addition, GCS-OVA-Rib NPs and GCS-OVA-Que NPs showed antioxidant activity as well as good stability and delivery capacity for Rib and Que. in simulated digestion with release ratios of 78.38 % and 84.15 %, respectively. More importantly, GCS-OVA-Rib/Que. NPs performed good biocompatibility for further applications. Overall, this work provides some useful insights for the design of novel amphiphilic nano-delivery systems based on polysaccharides and proteins.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Digestão , Portadores de Fármacos/química , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas/química , Ovalbumina , Polissacarídeos , Quercetina
12.
Small Methods ; 5(6): e2001090, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34927921

RESUMO

In perovskite solar cells (PSCs), a defective perovskite (PVK) surface and cliff-like energy offset at the interface always slow down the charge extraction; meanwhile, interface ion diffusion causes oxidation of the metal electrode, inducing device instability. Here, the in situ grown 2D-(CH3 NH2 )3 Sb2 I9 (MA3 Sb2 I9 ) on the back surface of MAPbI3 results in a more robust interface. MA3 Sb2 I9 changes the MAPbI3 surface to p-type and thus acts like a back surface field to drive charge extraction and suppress recombination, resulting in an obviously higher fill factor (FF) = 0.8 and power conversion efficiency (PCE) = 20.4% of SnO2 /MAPbI3 /MA3 Sb2 I9 /Spiro-OMeTAD (2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) PSC than the pure MAPbI3 device. More importantly, strong chemical bonding of SbI prohibits ion diffusion, largely enhancing the thermal stability and longtime stability. Here, special 2D-MA3 Sb2 I9 constructs' robust band alignment and chemical environment at the interface are highlighted for efficient and stable PSCs.

13.
ACS Appl Mater Interfaces ; 12(30): 34462-34469, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32631047

RESUMO

Lead-free orthorhombic CsSnI3 (Bγ-CsSnI3) perovskite has been emerging as one of the potential candidates of photovoltaic materials with superior performance. However, the instability induced by rapid reconstructive phase transition and the oxidation of Sn2+ greatly limits their future application. We thus reported a strategy, oriented π-conjugated ligand passivation, for enhancing the stability of Bγ-CsSnI3, simulated using a Bγ-CsSnI3 slab model based on the first-principles computation. The phase stability was found to be strongly dependent on the orientations of phenylethylammonium (PEA+) ligands. The passivated Bγ-CsSnI3 slab with the ligand molecule axis along [414] was demonstrated as the most stable with the lowest adsorption energy (Eads). Based on this configuration, the calculated formation energies (Eform) of half- and full-monolayer coverage were even more negative than that of yellow phase (Y-) CsSnI3 passivated by PEA+ ligands, verifying the enhanced phase stability. Furthermore, the surface states could be effectively suppressed and the downshifted conduction band minimum (CBM) resulted in a reduced band gap for the completely capped Bγ-CsSnI3. Moreover, the CBM and the valence band maximum (VBM) of the system with complete coverage were respectively donated by the surface and bulky components of the slab, which might benefit the separation and transfer of photogenerated carriers.

14.
J Phys Chem Lett ; 10(1): 59-66, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554516

RESUMO

The intrinsic poor stability of MAPbI3 hybrid perovskites in the ambient environment remains as the major challenge for photovoltaic applications. In this work, complementary first-principles calculations and experimental characterizations reveal that metal cation alloyed perovskite (MABa xPb1- xI3) can be synthesized and exhibit substantially enhanced stability via forming stronger Ba-I bonds. The Ba-Pb alloyed perovskites remain phase-pure in ambient air for more than 15 days. Furthermore, the bandgap of MABa xPb1- xI3 is tailored in a wide window of 1.56-4.08 eV. Finally, MABa xPb1- xI3 is used as a capping layer on MAPbI3 in solar cells, resulting in significantly improved power conversion efficiency (18.9%) and long-term stability (>30 days). Overall, our results provide a simple but reliable strategy toward stable less-Pb perovskites with tailored physical properties.

15.
J Phys Chem Lett ; 9(20): 6032-6037, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30230842

RESUMO

Molybdenum disulfide (2H-MoS2) based low-dimensional nanostructure materials have great potential for applications in electronic and optoelectronic devices. However, some of the properties such as the origin of the native n-type electrical conductivity (EC) observed in these materials still remain elusive. Here, the defect properties in the 2H-MoS2 bulk system are systematically investigated by first-principles calculation to address these issues. We find that the S vacancy VS with low formation energy cannot be the origin of n-type EC owing to its deep defect levels within the valence band region. All other donor defects such as antisite MoS or Mo interstitial MoI also have deep levels that can trap electrons leading to depressed EC. SMo and SI could be the origin of the p-type EC in 2H-MoS2, but the concentrations are expected to be rather low due to their high formation energies and can only be enhanced under S-rich/Mo-poor conditions. These results provide the underlying insights on the defect properties 2H-MoS2 and explain well the experimental observations.

16.
ACS Appl Mater Interfaces ; 10(36): 30811-30818, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30124044

RESUMO

With superior electrical and thermal properties, aluminum nitride (AlN) exhibits wide application. However, AlN is rather oxygen-sensitive and tends to be oxidized at high temperature. The surface oxidation of AlN remains a major challenge, while the underlying physics of AlN surface oxidation is still elusive. Here, First-principles calculations were performed to study wurtzite AlN(0001) surface oxidation process. The adsorption energy of oxygen was calculated to be site-dependent on the surface with varying O coverage. Calculation indicates that oxygen atoms are preferentially adsorbed at the hollow site (H3) of the AlN(0001) surface regardless of the O coverage. N2 is determined as the dominant gas product. The procedure of N3- removal and the formation of N vacancies (VN) take place step by step. VN plays an accelerating role in the oxidation of AlN, and O2- prefers to occupy the site of VN via consuming the Al p lone-pair electrons and passivating the dangling bond states of Al. An O-Al-O layer is formed when the first Al-N bilayer is fully oxidized, which could be regarded as a precursor of γ-Al2O3. On the basis of our atomic-level simulation, a possible phase transformation mechanism from γ-Al2O3 to α-Al2O3 was further proposed.

17.
ACS Appl Mater Interfaces ; 9(40): 35178-35190, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28933812

RESUMO

Low turn-on fields together with boosted stabilities are recognized as two key factors for pushing forward the implementations of the field emitters in electronic units. In current work, we explored superior flexible field emitters based on single-crystalline 3C-SiC nanowires, which had numbers of sharp edges, as well as corners surrounding the wire body and B dopants. The as-constructed field emitters behaved exceptional field emission (FE) behaviors with ultralow turn-on fields (Eto) of 0.94-0.68 V/µm and current emission fluctuations of ±1.0-3.4%, when subjected to harsh working conditions under different bending cycles, various bending configurations, as well as elevated temperature environments. The sharp edges together with the edges were able to significantly increase the electron emission sites, and the incorporated B dopants could bring a more localized state close to the Fermi level, which rendered the SiC nanowire emitters with low Eto, large field enhancement factor as well as robust current emission stabilities. Current B-doped SiC nanowires could meet all essential requirements for an ideal flexible emitters, which exhibit their promising prospect to be applied in flexible electronic units.

18.
ACS Appl Mater Interfaces ; 9(18): 15605-15614, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28421740

RESUMO

Colloidal ZnO nanoparticle (NP) films are recognized as efficient electron transport layers (ETLs) for quantum dot light-emitting diodes (QD-LEDs) with good stability and high efficiency. However, because of the inherently high work function of such films, spontaneous charge transfer occurs at the QD/ZnO interface in such a QD-LED, thus leading to reduced performance. Here, to improve the QD-LED performance, we prepared Ga-doped ZnO NPs with low work functions and tailored band structures via a room-temperature (RT) solution process without the use of bulky organic ligands. We found that the charge transfer at the interface between the CdSe/ZnS QDs and the doped ZnO NPs was significantly weakened because of the incorporated Ga dopants. Remarkably, the as-assembled QD-LEDs, with Ga-doped ZnO NPs as the ETLs, exhibited superior luminances of up to 44 000 cd/m2 and efficiencies of up to 15 cd/A, placing them among the most efficient red-light QD-LEDs ever reported. This discovery provides a new strategy for fabricating high-performance QD-LEDs by using RT-processed Ga-doped ZnO NPs as the ETLs, which could be generalized to improve the efficiency of other optoelectronic devices.

19.
J Nanosci Nanotechnol ; 16(4): 3796-801, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451712

RESUMO

In this study, UV photodetectors (PDs) based on SiC nanowire films have been successfully prepared by a simple and low-cost drip-coating method followed by sintering at 500 °C. The corresponding electrical characterizations clearly demonstrate that the SiC nanowire based PD devices can be regarded as a promising candidate for UV PDs. The PDs can exhibit the excellent performances of fast, high sensitivity, linearity, and stable response, which can thus achieve on-line monitoring of weak UV light. Furthermore, the SiC nanowire-based PDs enable us to fabricate detectors working under high temperature as high as 150 °C. The high photosensitivity and rapid photoresponse for the PDs can be attributed to the superior single crystalline quality of SiC nanowires and the ohmic contact between the electrodes and nanowires.

20.
ACS Appl Mater Interfaces ; 8(31): 20128-37, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27430307

RESUMO

Development of novel hybrid photocatalysts with high efficiency and durability for photocatalytic hydrogen generation is highly desired but still remains a grand challenge currently. In the present work, we reported the exploration of ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers via a foaming-assisted electrospinning technique. It is found that by adjusting the Cu contents in the solutions, the unitary (TiO2), binary (TiO2/CuO, TiO2/Cu), and ternary (TiO2/CuO/Cu) mesoporous products can be obtained, enabling the growth of TiO2/CuO/Cu ternary hybrids in a tailored manner. The photocatalytic behavior of the as-synthesized products as well as P25 was evaluated in terms of their hydrogen evolution efficiency for the photodecomposition water under Xe lamp irradiation. The results showed that the ternary TiO2/CuO/Cu thoroughly mesoporous nanofibers exhibit a robust stability and the most efficient photocatalytic H2 evolution with the highest release rate of ∼851.3 µmol g(-1) h(-1), which was profoundly enhanced for more than 3.5 times with respect to those of the pristine TiO2 counterparts and commercial P25, suggesting their promising applications in clean energy production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA