RESUMO
Hereditary spherocytosis (HS) is one of the most common causes of hereditary hemolytic anemia. The current diagnostic guidelines for HS are mainly based on a combination of physical examination and laboratory investigation. However, some patients present with complicated clinical manifestations that cannot be explained by routine diagnostic protocols. Here, we report a rare HS case of mild anemia with extremely high indirect bilirubin levels and high expression of fetal hemoglobin. Using whole exome sequencing analysis, this patient was identified as a heterozygous carrier of a de novo SPTB nonsense mutation (c.605G > A; p.W202*) and a compound heterozygous carrier of known UGT1A1 and KLF1 mutations. This genetic analysis based on the interpretation of the patient's genomic data not only achieved precise diagnosis by an excellent explanation of the complicated phenotype but also provided valuable suggestions for subsequent appropriate approaches for treatment, surveillance and prophylaxis.
Assuntos
Fatores de Transcrição Kruppel-Like , Fenótipo , Esferocitose Hereditária , Humanos , Códon sem Sentido/genética , Sequenciamento do Exoma , Glucuronosiltransferase/genética , Heterozigoto , Fatores de Transcrição Kruppel-Like/genética , Espectrina/genética , Esferocitose Hereditária/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/sangue , Esferocitose Hereditária/complicaçõesRESUMO
A novel strategy for the difunctionalization of electron-deficient alkenes with aryl sulfonium salts to access remote sulfur-containing oxindole derivatives by using in situ-formed copper(I)-based complexes as a photoredox catalyst is presented. This method enables the generation of the C(sp3)-centered radicals through site selective cleavage of the C-S bond of aryl sulfonium salts under mild conditions. Moreover, the oxidation reactions of desired products provide a new strategy for the preparation of sulfoxide or sulfone-containing compounds. Importantly, this approach can be easily applied to late-stage modification of pharmaceuticals molecules.
RESUMO
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
RESUMO
OBJECTIVE: Thalassemia is a Mendelian-inherited blood disorder with severe consequences, including disability and mortality, making it a significant public health concern. Therefore, there is an urgent need for precise diagnostic technologies. We introduce two innovative diagnostic techniques for thalassemia, SNPscan and CNVplex, designed to enhance molecular diagnostics of thalassemia. METHODS: The SNPscan and CNVplex assays utilize variations in PCR product length and fluorescence to identify multiple mutations. In the SNPscan method, we designed three probes per locus: two 5' and one 3', and incorporated allele identification link sequences into one of the 5' probes to distinguish the alleles. The detection system was designed for 67 previously reported loci in the Chinese population for a specific genetic condition. CNVplex identifies deletion types by analyzing the specific positions of probes within the globin gene. This innovative approach enables the detection of six distinct deletional mutations, enhancing the precision of thalassemia diagnostics. We evaluated and refined the methodologies in a training cohort of 100 individuals with confirmed HBA and HBB genotypes. The validation cohort, consisting of 1647 thalassemia patients and 100 healthy controls, underwent a double-blind study. Traditional diagnostic techniques served as the control methods. RESULTS: In the training set of 100 samples, 10 mutations (Hb QS, Hb CS, Hb Westmead, CD17, CD26, CD41-42, IVS-II-654, --SEA, -α3.7 and -α4.2) were identified, consistent with those identified by traditional methods. The validation study showed that SNPscan/CNVplex offered superior molecular diagnostic capabilities for thalassemia, with 100% accuracy compared to 99.43% for traditional methods. Notably, the assay identified three previously undetected mutations in 10 cases, including two deletion mutations (Chinese Gγ(Aγδß)0 del and SEA-HPFH), and one non-deletion mutation (Hb Q-Thailand). CONCLUSIONS: The SNPscan/CNVplex assay is a cost-effective and user-friendly tool for diagnosing thalassemia, demonstrating high accuracy and reliability, and showing great potential as a primary diagnostic method in clinical practice.
Assuntos
Polimorfismo de Nucleotídeo Único , Talassemia , Humanos , Feminino , Talassemia/genética , Talassemia/diagnóstico , Estudos de Casos e Controles , Gravidez , MasculinoRESUMO
Silica nanoparticles (SiNPs) are widely used in various commercial applications, which inevitably increase the risk of human exposure. It's reported that SiNPs have toxic effects on fertility, however, the specific mechanism of female reproductive toxicity induced by SiNPs remains confusing. In this study, female C57BL/6 mice at the age of 8 weeks were administrated orally with SiNPs at doses of 0, 3, and 10â¯mg/kg bw. every day in the presence/absence of NAC for eight weeks. The results showed that SiNPs could cause damage to ovaries and reduce the number of ovarian follicles, which led to disruption of sex hormone, altered estrous cyclicity and decreased female fertility. In addition, SiNPs induced oxidative stress in the ovary, as manifested by increased ROS and MDA levels, decreased SOD activity and inhibition of the Nrf2/HO-1 signaling pathway. Further study revealed that exposure to SiNPs resulted in mitochondrial dysfunction and promoted autophagy mediated by PI3K/AKT/mTOR and PINK1/Parkin signaling pathways. Meanwhile, apoptosis is also involved in SiNPs-induced cell death in a cooperative and synchronized manner, as evidenced by an increase in apoptosis-positive cells and activation of the ATM/p53-mediated apoptotic pathway. The supplementation of NAC restored most of the reproductive characteristics of the mice to its physiological range. These results demonstrated that SiNPs could cause ovarian damage via inducing oxidative stress and mitochondrial dysfunction, which led to autophagy and apoptosis, and ultimately resulting in abnormal folliculogenesis and female subfertility.
Assuntos
Apoptose , Autofagia , Camundongos Endogâmicos C57BL , Nanopartículas , Ovário , Estresse Oxidativo , Dióxido de Silício , Animais , Feminino , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Nanopartículas/toxicidade , Camundongos , Ovário/efeitos dos fármacos , Ovário/patologia , Fertilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Haemoglobin H (Hb H) disease (intermediate status of α-thalassemia) shows marked phenotypic variability from asymptomatic to severe anaemia. Apart from the combined ß-thalassemia allele ameliorating clinical severity, reports of genetic modifier genes affecting the phenotype of Hb H disease are scarce which bring inconvenience to precise diagnosis and genetic counselling of the patients. Here, we present a novel mutation (c.948C>A, p.S316R) in the PIP4K2A gene in a female Hb H disease patient who displayed moderate anaemia and a relatively high Hb H level. Haematological analysis in her family members revealed that individuals carrying this mutation have upregulated ß-globin expression, leading to a more imbalanced ß/α-globin ratio and more Hb H inclusion bodies in peripheral red blood cells. According to functional experiments, the mutant PIP4K2A protein exhibits enhanced protein stability, increased kinase activity and a stronger regulatory effect on downstream proteins, suggesting a gain-of-function mutation. Moreover, introduction of the S316R mutation into HUDEP-2 cells increased expression of ß-globin, further inhibiting erythroid differentiation and terminal enucleation. Thus, the S316R mutation is a novel genetic factor associated with ß-globin expression, and the PIP4K2A gene is a new potential modifier gene affecting the α-thalassemia phenotype.
Assuntos
Talassemia alfa , Talassemia beta , Feminino , Humanos , Talassemia alfa/genética , Mutação com Ganho de Função , Globinas beta/genética , Mutação , Talassemia beta/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
Thalassemia is one of the most common single-gene disorder worldwide. An important genetic cause of thalassemia is copy number variations (CNVs) in the α-globin gene cluster. However, there is no unified summary and discussion on the detailed information and mechanisms of these CNVs. In this study, two novel CNVs, a tandem duplication (αααα159) and deletion (--259), were identified in two Chinese families with thalassemia patients, according to the results of hematologic analysis, routine genetic testing for thalassemia, multiplex ligation-dependent probe amplification (MLPA), next-generation sequencing (NGS) and other molecular methods. Co-inherited with ßCD41-42 mutation and --SEA deletion separately, αααα159 and --259 resulted in a patient with ß-thalassemia intermedia and a lethal fetus with Hb Bart's hydrops fetalis syndrome, respectively. Next, a literature review was performed to summarize all known CNVs involving the α-globin gene cluster. The molecular structure characteristics of these CNVs were analyzed and the possible mechanism was explored. It is the first time to analyze the generation mechanism of genome arrangements in the α-globin gene cluster systematically.
Assuntos
Variações do Número de Cópias de DNA , Talassemia , Humanos , Variações do Número de Cópias de DNA/genética , alfa-Globinas/genética , Cromossomos Humanos Par 16/genética , Talassemia/genética , Família MultigênicaRESUMO
BACKGROUND: COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS: The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS: The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION: OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.
Assuntos
COVID-19 , Insuficiência Cardíaca , MicroRNAs , Humanos , COVID-19/complicações , COVID-19/genética , SARS-CoV-2 , Insuficiência Cardíaca/genética , Antivirais , MicroRNAs/genéticaRESUMO
Diamond-Blackfan anaemia (DBA) is an inherited marrow failure disorder characterised by selective erythroid aplasia. Herein, we reported a case of DBA caused by a novel GATA1 gene mutation. The proband manifested normocytic normochromic anaemia, while the parents were asymptomatic. Next-generation sequencing identified a novel de novo mutation at GATA1 initiation codon (GATA1:c.3G>A) in the proband. The mutation led to a shortened GATA1 protein (GATA1s), which caused a reduction in full-length functional GATA1 protein (GATA1fl). This is the first report of GATA1-related DBA patient in the East Asian population, which expanded the mutational spectrum of DBA furthering understanding of its pathogenesis.
Assuntos
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/genética , Códon de Iniciação , Isoformas de Proteínas/genética , Mutação , Fator de Transcrição GATA1/genéticaRESUMO
The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR â -mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.
Assuntos
Nanopartículas , Dióxido de Silício , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Masculino , Camundongos , Nanopartículas/toxicidade , Estresse Oxidativo , Dióxido de Silício/toxicidade , EspermatogêneseRESUMO
Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2â¢-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-ß), TGF-ß receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2â¢- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-ß/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-ß/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.
Assuntos
FosforilcolinaRESUMO
Re-activation of fetal haemoglobin (HbF) has been proved to be an effective strategy for the treatment of ß-haemoglobinopathies. In this study, we identified TEA domain transcription factor 4 (TEAD4) as a new potential regulator of HbF by integrating public data sets with quantitative polymerase chain reaction analysis in ß-thalassaemia patients. Significant negative correlation was observed between the expression of TEAD4 and HbF levels in ß-thalassaemia patients. Functional validations of TEAD4 inhibition in both ß-thalassaemia CD34+ cells and HUDEP-2 cells indicated that depletion of TEAD4 led to a significant increase of HbF. Finally, we identified a binding motif of TEAD4 on γ-globin gene promoters; its disruption consistently led to de-repression of HbF. Taken together, these results demonstrate that TEAD4 could act as a transcriptional inhibitor of the γ-globin gene through direct binding on its promoter. Our findings demonstrate a novel role of TEAD4 on the regulation of HbF, which may benefit patients with ß-haemoglobinopathies.
Assuntos
Hemoglobina Fetal/genética , Regiões Promotoras Genéticas , Fatores de Transcrição de Domínio TEA/metabolismo , gama-Globinas/genética , Linhagem Celular , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Talassemia beta/genética , Talassemia beta/metabolismoRESUMO
Krüppel-like factors (KLFs) are a highly conserved family of transcription factors. We analysed expression profile data of KLFs and identified KLF6 as a new potential regulator of erythropoiesis. Knocking down the expression of KLF6 significantly raised γ-globin mRNA and protein levels in the erythroid cell line HUDEP-2 and haematopoietic progenitor (CD34+ ) cells. We found that overexpression of microRNA (miR)-2355-5p in HUDEP-2 and CD34+ cells correlated with increased γ-globin synthesis by suppressing expression of KLF6. Our discovery that the interaction between miR-2355-5p and KLF6 affects the expression of γ-globin may provide more information for the clinical management of ß-thalassaemia patients.
Assuntos
Células Eritroides/metabolismo , Hemoglobina Fetal/genética , MicroRNAs/genética , gama-Globinas/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Eritropoese/genética , Humanos , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição/genética , Talassemia beta/genética , Talassemia beta/terapiaRESUMO
We here describe a novel hemoglobin (Hb) variant, Hb Liaobu [α107(G14)ValâLeu, HBA2: c.322G>C], in a Chinese family. The structurally abnormal α chain variant could not be detected using capillary electrophoresis (CE) and was subsequently characterized by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS), and further confirmed by reversed phase high performance liquid chromatography (HPLC). Sanger sequencing revealed a novel base mutation on the α2-globin gene and RNA analysis by reverse transcription polymerase chain reaction (RT-PCR) showed the presence of an abnormal HBA transcript. The isopropanol stability test indicated the stable state of this structural Hb variant. In conclusion, a new Hb variant, Hb Liaobu, was discovered and characterized. It was proven to be a nonpathogenic variant. Our study resolved the confusion in the clinical diagnosis of individuals with this novel Hb variant in this family.
Assuntos
Hemoglobinas Anormais , Eletroforese Capilar , Hemoglobinas Anormais/análise , Hemoglobinas Anormais/genética , Humanos , Lasers , Espectrometria de Massas , Mutação , alfa-Globinas/análise , alfa-Globinas/genéticaRESUMO
We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.
Assuntos
Quimiotaxia de Leucócito/imunologia , Vesículas Extracelulares/imunologia , Doenças das Valvas Cardíacas/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Rim/imunologia , Neutrófilos/imunologia , Insuficiência Renal/imunologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Animais , Estudos de Casos e Controles , Quimiocina CCL5/efeitos dos fármacos , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Dexmedetomidina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/imunologia , Proteína Forkhead Box O3/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Fosforilação , Fator Plaquetário 4/efeitos dos fármacos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal/metabolismo , VasodilataçãoRESUMO
α-thalassemia is an inherited blood disorder commonly caused by deletions or point mutations involving one or both α-globin genes. Recent studies shed new light on the critical role of upstream enhancers multi-species conserved sequences (MCSs) in the ordered regulation of α-globin gene expression. Herein, we reported two unrelated probands with deletions in α-globin genes and MCSs, respectively. The proband from Family A is a compound heterozygote carrying a known α+ mutation (-α3.7) and a novel 60.2 kb deletion causing the absence of both α-globin genes. The proband from Family B, on the other hand, is a compound heterozygote with a known α0 mutation (--SEA) and a novel deletion involving only upstream regulatory elements MCS-R1, R2 and R3, while the α-globin genes remain intact. Notably, both these two patients suffered varied extent of anemia, indicating that the loss of enhancer elements could equally lead to reduced synthesis of α-globin. Upon these observations, we then confirmed the exact breakpoints of these two novel deletions using a targeted next-generation sequencing (NGS) previously established by our group, which may enable further elucidation of the rearrangement mechanisms on these deletions and functional dissection of MCSs. Taken together, our study reports a reliable NGS-based molecular screening approach for accurate identification of copy number variations (CNVs) in the α-globin cluster and the genetic diagnosis of these two probands may help to extend the spectrum of α-thalassemia mutations in Chinese population.
Assuntos
Elementos Alu/genética , Anemia/genética , alfa-Globinas/genética , Talassemia alfa/genética , Adulto , Anemia/sangue , Anemia/patologia , Variações do Número de Cópias de DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica/genética , Linhagem , Mutação Puntual/genética , Deleção de Sequência/genética , Talassemia alfa/sangue , Talassemia alfa/patologiaRESUMO
Not available.
Assuntos
Talassemia , Talassemia alfa , Quimerismo , Homozigoto , Humanos , Talassemia alfa/genéticaRESUMO
Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Animais , Cálcio/metabolismo , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , LinhagemRESUMO
Testis-specific genes are prone to affect spermatogenesis or sperm fertility, and thus may play pivotal roles in male reproduction. However, whether a gene really affects male reproduction in vivo needs to be confirmed using a gene knock-out (KO) model, a 'gold standard' method. Increasing studies have found that some of the evolutionarily conserved testis-enriched genes are not essential for male fertility. In this study, we report that 1700121C10Rik, a previously uncharacterized gene, is specifically expressed in the testis and produces two long noncoding RNAs (lncRNAs) in mouse: Transcript 1 and Transcript 2. qRT-PCR, northern blotting, and in situ hybridization revealed that expression of both the lncRNAs commenced at the onset of sexual maturity and was predominant in round and elongating spermatids during spermiogenesis. Moreover, we found different subcellular localization of Transcript 1 and Transcript 2 that was predominant in the cytoplasm and nucleus, respectively. 1700121C10Rik-KO mouse model disrupting Transcript 1 and Transcript 2 expression was generated by CRISPR/Cas9 to determine their role in male reproduction. Results showed that 1700121C10Rik-KO male mice were fully fertile with approximately standard testis size, testicular histology, sperm production, sperm morphology, sperm motility, and induction of acrosome reaction. Thus, we conclude that both the testis-specific 1700121C10Rik-produced lncRNAs are dispensable for male fertility in mice under standard laboratory conditions.
Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , RNA Longo não Codificante/genética , Espermatogênese/genética , Testículo/metabolismo , Animais , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA Longo não Codificante/metabolismo , Motilidade dos Espermatozoides/genéticaRESUMO
Alpha-thalassemia is an autosomal recessive genetic disease as well as a relatively common hemoglobinopathy. Severe alpha-thalassemia (also known as Hb Bart's Hydrops fetalis syndrome) and intermediate alpha-thalassemia (also known as Hb H disease) are among the most common birth defects in southern China. To implement carrier screening and large population prevention program in high incidence areas can significantly reduce the incidence of alpha-thalassemia. This guideline was established by combining the discoveries of basic research, clinical research and guidelines from other countries and the actual data of Chinese population. It has summarized the medical genetics knowledge and key points in the clinical treatment for alpha-thalassemia, and provided suggestions for the clinical diagnosis and standard management of patients.