Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Endocrinol Metab ; 318(5): E613-E624, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154742

RESUMO

The angiopoietin-like protein (ANGPTL) family represents a promising therapeutic target for dyslipidemia, which is a feature of obesity and type 2 diabetes (T2DM). The aim of the present study was to determine the metabolic role of ANGPTL8 and to investigate its nutritional, hormonal, and molecular regulation in key metabolic tissues. The regulation of Angptl8 gene expression by insulin and glucose was quantified using a combination of in vivo insulin clamp experiments in mice and in vitro experiments in primary and cultured hepatocytes and adipocytes. The role of AMPK signaling was examined, and the transcriptional control of Angptl8 was determined using bioinformatic and luciferase reporter approaches. The metabolism of Angptl8 knockout mice (ANGPTL8-/-) was examined following chow and high-fat diets (HFD). Insulin acutely increased Angptl8 expression in liver and adipose tissue, which involved the CCAAT/enhancer-binding protein (C/EBPß) transcription factor. In insulin clamp experiments, glucose further enhanced Angptl8 expression in the presence of insulin in adipose tissue. The activation of AMPK signaling antagonized the effect of insulin on Angptl8 expression in hepatocytes and adipocytes. The ANGPTL8-/- mice had improved glucose tolerance and displayed reduced fed and fasted plasma triglycerides. However, there was no change in body weight or steatosis in ANGPTL8-/- mice after the HFD. These data show that ANGPTL8 plays important metabolic roles in mice that extend beyond triglyceride metabolism. The finding that insulin, glucose, and AMPK signaling regulate Angptl8 expression may provide important clues about the distinct function of ANGPTL8 in these tissues.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Células 3T3-L1 , Adenilato Quinase/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
2.
Clin Sci (Lond) ; 127(5): 315-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24611892

RESUMO

Acylcarnitine accumulation in skeletal muscle and plasma has been observed in numerous models of mitochondrial lipid overload and insulin resistance. Fish oil n3PUFA (omega-3 polyunsaturated fatty acids) are thought to protect against lipid-induced insulin resistance. The present study tested the hypothesis that the addition of n3PUFA to an intravenous lipid emulsion would limit muscle acylcarnitine accumulation and reduce the inhibitory effect of lipid overload on insulin action. On three occasions, six healthy young men underwent a 6-h euglycaemic-hyperinsulinaemic clamp accompanied by intravenous infusion of saline (Control), 10% Intralipid® [n6PUFA (omega-6 polyunsaturated fatty acids)] or 10% Intralipid®+10% Omegaven® (2:1; n3PUFA). The decline in insulin-stimulated whole-body glucose infusion rate, muscle PDCa (pyruvate dehydrogenase complex activation) and glycogen storage associated with n6PUFA compared with Control was prevented with n3PUFA. Muscle acetyl-CoA accumulation was greater following n6PUFA compared with Control and n3PUFA, suggesting that mitochondrial lipid overload was responsible for the lower insulin action observed. Despite these favourable metabolic effects of n3PUFA, accumulation of total muscle acylcarnitine was not attenuated when compared with n6PUFA. These findings demonstrate that n3PUFA exert beneficial effects on insulin-stimulated skeletal muscle glucose storage and oxidation independently of total acylcarnitine accumulation, which does not always reflect mitochondrial lipid overload.


Assuntos
Carnitina/análogos & derivados , Ácidos Graxos Ômega-3/farmacologia , Resistência à Insulina/fisiologia , Lipídeos/farmacologia , Adulto , Carnitina/metabolismo , Óleos de Peixe , Glicogênio/metabolismo , Humanos , Insulina/farmacologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Triglicerídeos
3.
J Physiol ; 591(18): 4655-66, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23818692

RESUMO

Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of L-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n=6) or 1.36 g L-carnitine + 80 g carbohydrate (Carnitine, n=6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P<0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P<0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with 'insulin signalling', 'peroxisome proliferator-activated receptor signalling' and 'fatty acid metabolism' as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise.


Assuntos
Tecido Adiposo/metabolismo , Carnitina/metabolismo , Metabolismo Energético , Exercício Físico , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Tecido Adiposo/fisiologia , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Método Duplo-Cego , Humanos , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/fisiologia , Consumo de Oxigênio , PPAR alfa/metabolismo
4.
Aging Cell ; 20(2): e13303, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464721

RESUMO

Intramyocellular lipid (IMCL) utilization is impaired in older individuals, and IMCL accumulation is associated with insulin resistance. We hypothesized that increasing muscle total carnitine content in older men would increase fat oxidation and IMCL utilization during exercise, and improve insulin sensitivity. Fourteen healthy older men (69 ± 1 year, BMI 26.5 ± 0.8 kg/m2 ) performed 1 h of cycling at 50% VO2 max and, on a separate occasion, underwent a 60 mU/m2 /min euglycaemic hyperinsulinaemic clamp before and after 25 weeks of daily ingestion of a 220 ml insulinogenic beverage (44.4 g carbohydrate, 13.8 g protein) containing 4.5 g placebo (n = 7) or L-carnitine L-tartrate (n = 7). During supplementation, participants performed twice-weekly cycling for 1 h at 50% VO2 max. Placebo ingestion had no effect on muscle carnitine content or total fat oxidation during exercise at 50% VO2 max. L-carnitine supplementation resulted in a 20% increase in muscle total carnitine content (20.1 ± 1.2 to 23.9 ± 1.7 mmol/kg/dm; p < 0.01) and a 20% increase in total fat oxidation (181.1 ± 15.0 to 220.4 ± 19.6 J/kg lbm/min; p < 0.01), predominantly due to increased IMCL utilization. These changes were associated with increased expression of genes involved in fat metabolism (ACAT1, DGKD & PLIN2; p < 0.05). There was no change in resting insulin-stimulated whole-body or skeletal muscle glucose disposal after supplementation. This is the first study to demonstrate that a carnitine-mediated increase in fat oxidation is achievable in older individuals. This warrants further investigation given reduced lipid turnover is associated with poor metabolic health in older adults.


Assuntos
Carnitina/metabolismo , Exercício Físico , Gorduras/metabolismo , Músculo Esquelético/metabolismo , Idoso , Humanos , Masculino , Oxirredução
5.
Mol Metab ; 45: 101154, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359401

RESUMO

OBJECTIVE: Insulin resistance and altered hepatic mitochondrial function are central features of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), but the etiological role of these processes in disease progression remains unclear. Here we investigated the molecular links between insulin resistance, mitochondrial remodeling, and hepatic lipid accumulation. METHODS: Hepatic insulin sensitivity, endogenous glucose production, and mitochondrial metabolic fluxes were determined in wild-type, obese (ob/ob) and pioglitazone-treatment obese mice using a combination of radiolabeled tracer and stable isotope NMR approaches. Mechanistic studies of pioglitazone action were performed in isolated primary hepatocytes, whilst molecular hepatic lipid species were profiled using shotgun lipidomics. RESULTS: Livers from obese, insulin-resistant mice displayed augmented mitochondrial content and increased tricarboxylic acid cycle (TCA) cycle and pyruvate dehydrogenase (PDH) activities. Insulin sensitization with pioglitazone mitigated pyruvate-driven TCA cycle activity and PDH activation via both allosteric (intracellular pyruvate availability) and covalent (PDK4 and PDP2) mechanisms that were dependent on PPARγ activity in isolated primary hepatocytes. Improved mitochondrial function following pioglitazone treatment was entirely dissociated from changes in hepatic triglycerides, diacylglycerides, or fatty acids. Instead, we highlight a role for the mitochondrial phospholipid cardiolipin, which underwent pathological remodeling in livers from obese mice that was reversed by insulin sensitization. CONCLUSION: Our findings identify targetable mitochondrial features of T2D and NAFLD and highlight the benefit of insulin sensitization in managing the clinical burden of obesity-associated disease.


Assuntos
Resistência à Insulina/fisiologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Glicemia/metabolismo , Cardiolipinas , Ciclo do Ácido Cítrico , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Tiazolidinedionas , Triglicerídeos/metabolismo
6.
Nat Commun ; 10(1): 4720, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624249

RESUMO

Understanding the molecular components of insulin signaling is relevant to effectively manage insulin resistance. We investigated the phenotype of the TMEM127 tumor suppressor gene deficiency in vivo. Whole-body Tmem127 knockout mice have decreased adiposity and maintain insulin sensitivity, low hepatic fat deposition and peripheral glucose clearance after a high-fat diet. Liver-specific and adipose-specific Tmem127 deletion partially overlap global Tmem127 loss: liver Tmem127 promotes hepatic gluconeogenesis and inhibits peripheral glucose uptake, while adipose Tmem127 downregulates adipogenesis and hepatic glucose production. mTORC2 is activated in TMEM127-deficient hepatocytes suggesting that it interacts with TMEM127 to control insulin sensitivity. Murine hepatic Tmem127 expression is increased in insulin-resistant states and is reversed by diet or the insulin sensitizer pioglitazone. Importantly, human liver TMEM127 expression correlates with steatohepatitis and insulin resistance. Our results suggest that besides tumor suppression activities, TMEM127 is a nutrient-sensing component of glucose/lipid homeostasis and may be a target in insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Genes Supressores de Tumor , Resistência à Insulina/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Adipogenia/genética , Animais , Dieta Hiperlipídica , Perfilação da Expressão Gênica/métodos , Gluconeogênese/genética , Humanos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética
7.
Am J Clin Nutr ; 103(1): 276-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26675771

RESUMO

BACKGROUND: Increasing skeletal muscle carnitine content represents an appealing intervention in conditions of perturbed lipid metabolism such as obesity and type 2 diabetes but requires chronic L-carnitine feeding on a daily basis in a high-carbohydrate beverage. OBJECTIVE: We investigated whether whey protein ingestion could reduce the carbohydrate load required to stimulate insulin-mediated muscle carnitine accretion. DESIGN: Seven healthy men [mean ± SD age: 24 ± 5 y; body mass index (in kg/m(2)): 23 ± 3] ingested 80 g carbohydrate, 40 g carbohydrate + 40 g protein, or control (flavored water) beverages 60 min after the ingestion of 4.5 g L-carnitine tartrate (3 g L-carnitine; 0.1% (2)[H]3-L-carnitine). Serum insulin concentration, net forearm carnitine balance (NCB; arterialized-venous and venous plasma carnitine difference × brachial artery flow), and carnitine disappearance (Rd) and appearance (Ra) rates were determined at 20-min intervals for 180 min. RESULTS: Serum insulin and plasma flow areas under the curve (AUCs) were similarly elevated by carbohydrate [4.5 ± 0.8 U/L · min (P < 0.01) and 0.5 ± 0.6 L (P < 0.05), respectively] and carbohydrate+protein [3.8 ± 0.6 U/L · min (P < 0.01) and 0.4 ± 0.6 L (P = 0.05), respectively] consumption, respectively, compared with the control visit (0.04 ± 0.1 U/L · min and -0.5 ± 0.2 L). Plasma carnitine AUC was greater after carbohydrate+protein consumption (3.5 ± 0.5 mmol/L · min) than after control and carbohydrate visits [2.1 ± 0.2 mmol/L · min (P < 0.05) and 1.9 ± 0.3 mmol/L · min (P < 0.01), respectively]. NCB AUC with carbohydrate (4.1 ± 3.1 µmol) was greater than during control and carbohydrate-protein visits (-8.6 ± 3.0 and -14.6 ± 6.4 µmol, respectively; P < 0.05), as was Rd AUC after carbohydrate (35.7 ± 25.2 µmol) compared with control and carbohydrate consumption [19.7 ± 15.5 µmol (P = 0.07) and 14.8 ± 9.6 µmol (P < 0.05), respectively]. CONCLUSIONS: The insulin-mediated increase in forearm carnitine balance with carbohydrate consumption was acutely blunted by a carbohydrate+protein beverage, which suggests that carbohydrate+protein could inhibit chronic muscle carnitine accumulation.


Assuntos
Carnitina/metabolismo , Dieta , Insulina/sangue , Músculo Esquelético/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Adulto , Área Sob a Curva , Braço , Bebidas , Carboidratos da Dieta/administração & dosagem , Ingestão de Alimentos , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Valores de Referência , Adulto Jovem
8.
Diabetes ; 65(4): 840-50, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26740597

RESUMO

Insulin resistance is closely related to intramyocellular lipid (IMCL) accumulation, and both are associated with increasing age. It remains to be determined to what extent perturbations in IMCL metabolism are related to the aging process per se. On two separate occasions, whole-body and muscle insulin sensitivity (euglycemic-hyperinsulinemic clamp with 2-deoxyglucose) and fat utilization during 1 h of exercise at 50% VO2max ([U-(13)C]palmitate infusion combined with electron microscopy of IMCL) were determined in young lean (YL), old lean (OL), and old overweight (OO) males. OL displayed IMCL content and insulin sensitivity comparable with those in YL, whereas OO were markedly insulin resistant and had more than twofold greater IMCL in the subsarcolemmal (SSL) region. Indeed, whereas the plasma free fatty acid Ra and Rd were twice those of YL in both OL and OO, SSL area only increased during exercise in OO. Thus, skeletal muscle insulin resistance and lipid accumulation often observed in older individuals are likely due to lifestyle factors rather than inherent aging of skeletal muscle as usually reported. However, age per se appears to cause exacerbated adipose tissue lipolysis, suggesting that strategies to reduce muscle lipid delivery and improve adipose tissue function may be warranted in older overweight individuals.


Assuntos
Tecido Adiposo/metabolismo , Envelhecimento/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Músculo Esquelético/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Exercício Físico/fisiologia , Teste de Esforço , Técnica Clamp de Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/metabolismo , Oxirredução , Adulto Jovem
9.
Diabetes ; 64(5): 1615-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25524913

RESUMO

The ability to maintain skeletal muscle mass appears to be impaired in insulin-resistant conditions, such as type 2 diabetes, that are characterized by muscle lipid accumulation. The current study investigated the effect of acutely increasing lipid availability on muscle protein synthesis. Seven healthy young male volunteers underwent a 7-h intravenous infusion of l-[ring-(2)H5]phenylalanine on two randomized occasions combined with 0.9% saline or 10% Intralipid at 100 mL/h. After a 4-h "basal" period, a 21-g bolus of amino acids was administered and a 3-h hyperinsulinemic-euglycemic clamp was commenced ("fed" period). Muscle biopsy specimens were obtained from the vastus lateralis at 1.5, 4, and 7 h. Lipid infusion reduced fed whole-body glucose disposal by 20%. Furthermore, whereas the mixed muscle fractional synthetic rate increased from the basal to the fed period during saline infusion by 2.2-fold, no change occurred during lipid infusion, despite similar circulating insulin and leucine concentrations. This "anabolic resistance" to insulin and amino acids with lipid infusion was associated with a complete suppression of muscle 4E-BP1 phosphorylation. We propose that increased muscle lipid availability may contribute to anabolic resistance in insulin-resistant conditions by impairing translation initiation.


Assuntos
Aminoácidos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Emulsões/farmacologia , Glucose/metabolismo , Humanos , Masculino , Proteínas Musculares/genética , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA