RESUMO
Candida albicans is responsible for conditions ranging from superficial infections such as oral or vaginal candidiasis to potentially fatal systemic infections. It produces pathogenic factors contributing to its virulence. Iturin A, a lipopeptide derived from Bacillus sp., exhibits a significant inhibitory effect against C. albicans. However, its exact mechanism in mitigating the pathogenic factors of C. albicans remains to be elucidated. This study aimed to explore the influence of iturin A on several pathogenic attributes of C. albicans, including hypha formation, cell membrane permeability, cell adhesion, biofilm formation, and therapeutic efficacy in an oral C. albicans infection model in mice. The minimal inhibitory concentration of iturin A against C. albicans was determined to be 25 µg/mL in both YEPD and RPMI-1640 media. Iturin A effectively inhibited C. albicans hyphal formation, decreased cell viability within biofilms, enhanced cell membrane permeability, and disrupted cell adhesion in vitro. Nonetheless, iturin A did not significantly affect the phospholipase activity or hydrophobicity of C. albicans. A comparative study with nystatin demonstrated the superior therapeutic efficacy of iturin A in a mouse model of oral C. albicans infection, significantly decreasing C. albicans count and inhibiting both fungal hypha formation and tongue surface adhesion. High-dose iturin A treatment (25 µg/mL) in mice had no significant effects on blood indices, tongue condition, or body weight, indicating the potential for iturin A in managing oral infections. This study confirmed the therapeutic potential of iturin A and provided valuable insights for developing effective antifungal therapies targeting C. albicans pathogenic factors.
Assuntos
Candida albicans , Candidíase , Feminino , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fatores de Virulência , Candidíase/tratamento farmacológico , BiofilmesRESUMO
Chronic wounds of significant severity and acute injuries are highly vulnerable to fungal infections, drastically impeding the expected wound healing trajectory. The clinical use of antifungal therapeutic drug is hampered by poor solubility, high toxicity and adverse reactions, thereby necessitating the urgent development of novel antifungal therapy strategy. Herein, this study proposes a new strategy to enhance the bioactivity of small-molecule antifungal drugs based on multifunctional metal nanozyme engineering, using amphotericin B (AmB) as an example. AmB-decorated gold nanoparticles (AmB@AuNPs) are synthesized by a facile one-pot reaction strategy, and the AmB@AuNPs exhibit superior peroxidase (POD)-like enzyme activity, with maximal reaction rates (Vmax) 3.4 times higher than that of AuNPs for the catalytic reaction of H2O2. Importantly, the enzyme-like activity of AuNPs significantly enhanced the antifungal properties of AmB, and the minimum inhibitory concentrations of AmB@AuNPs against Candida albicans (C. albicans) and Saccharomyces cerevisiae (S. cerevisiae) W303 are reduced by 1.6-fold and 50-fold, respectively, as compared with AmB alone. Concurrent in vivo studies conducted on fungal-infected wounds in mice underscored the fundamentally superior antifungal ability and biosafety of AmB@AuNPs. The proposed strategy of engineering antifungal drugs with nanozymes has great potential for enhanced therapy of fungal infections and related diseases.
Assuntos
Anfotericina B , Antifúngicos , Candida albicans , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Ouro/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/química , Anfotericina B/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Candida albicans/efeitos dos fármacos , Animais , Saccharomyces cerevisiae/efeitos dos fármacos , CamundongosRESUMO
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.
Assuntos
Anticorpos , Escherichia coli , Coelhos , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática/métodosRESUMO
BACKGROUND: Aeromonas species are opportunistic pathogens distributed widely in the ecosystem. They are known to be capable of acquiring antibiotic resistance genes, including those encoding proteins against last-line antibiotics, such as the tmexCD-toprJ, mcr and carbapenemase genes. We investigated the genomic and phenotypic characteristics of tmexCD-toprJ-positive Aeromonas strains collected from human, animals, and water samples, particularly those from hospital wastewater in China. METHODS: Samples were collected from living animals, meat, water and human. Aeromonas strains in these samples were isolated in selective media. Antimicrobial resistance profiles of all Aeromonas strains were tested by the broth microdilution method. The presence of tmexCD-toprJ was verified by polymerase chain reaction (PCR). All tmexCD-toprJ-positive (n = 36) and selected tmexCD-toprJ-negative (n = 18) Aeromonas strains were subjected to whole genome sequencing. Carriage of antimicrobial resistance genes, the genetic environment of tmexCD-toprJ and genetic diversity of tmexCD-toprJ-positive Aeromonas strains were determined by bioinformatics analysis. Phylogenetic tree of the Aeromonas strains was built by using the Harvest Suite. FINDINGS: Among the 636 Aeromonas strains isolated from different sources, 36 were positive for tmexCD-toprJ, with the highest prevalence of tmexCD-toprJ being found in fishes (8.8%, 95 CI% 3.6-17.2%), followed by hospital wastewater (6.5%, 95 CI% 4.3-9.3%), river water (2.0%, 0.1-10.9) and duck (1.2%, 95 CI% 3.6-17.2%). All tmexCD-toprJ-positive Aeromonas strains carried multiple antimicrobial resistance genes and exhibited resistance to different classes of antibiotics. Co-existence of tmexCD-toprJ, mcr and blaKPC-2 were identified in 21 strains. The tmexCD-toprJ-positive Aeromonas strains were genetically diverse and found to belong to four different species that could be clustered into three major lineages. The tmexCD-toprJ gene clusters were predominantly located in the chromosome (35/36) of Aeromonas spp., with only one strain carrying the plasmid-borne tmexCD-toprJ cluster. The tmexCD-toprJ genes were associated with seven different types of genetic environments, each of which carried distinct types of mobile elements that may be responsible for mediating transmission of this gene cluster.
Assuntos
Aeromonas , Animais , Humanos , Aeromonas/genética , Antibacterianos/farmacologia , Esgotos , Águas Residuárias , Ecossistema , Filogenia , Testes de Sensibilidade Microbiana , Água , Farmacorresistência Bacteriana/genéticaRESUMO
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Assuntos
Deficiências de Ferro , Selênio , Humanos , Ferro , Selênio/farmacologia , Selênio/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Fígado , Dieta HiperlipídicaRESUMO
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.
Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/genética , Bactérias/genéticaRESUMO
Metal corrosion caused by Aspergillus sp. was shown to be significantly enhanced on a space station, but its mechanism is still unknown. To simulate this on earth, the corrosion capability of A. carbonarius on five metal sheets was investigated under simulated microgravity. Also, the effect of metal ions on growth and organic acid production was determined. Results showed that A. carbonarius could corrode all five types of metal, including Ti alloy, aluminum alloy, iron, and aluminum and copper sheet, and the corrosion was intensified under simulated microgravity. Energy dispersive X-ray spectrometry (EDS) analysis showed that metal ions enriched on A. carbonarius spores, especially iron, aluminum ions, and copper ions, indicating that A. carbonarius can use these metal ions. In particular, the content of oxalic acid was significantly increased after A. carbonarius cocultured with five metal materials under simulated microgravity. Al3+, Fe3+, and Cu2+ at the concentration of 0.3 mg/mL and Mg2+ at 0.8 mg/mL significantly promoted the growth and oxalic acid and citric acid production of A. carbonarius and A. niger under normal gravity and simulated microgravity. Comparing the impact of metal ions and metal sheets on the production of organic acids, it can be inferred that oxalic acid may dominate in the corrosion process of A. carbonarius. In summary, molds promoted metal corrosion by producing organic acids, and the released metal ions will further promote the growth of mold and the accumulation of organic acids. This may be an important reason for the intensification of mold corrosion under microgravity. IMPORTANCE The space station and other long-term manned spacecrafts will experience the risk of microbial corrosion, especially mold, which will be harmful to the platform system and astronauts. Aspergillus sp. has been widely reported to produce organic acids that corrode and destroy materials, and the ability of these crafts to fly through space can be significantly affected. Research on the mechanism that causes enhanced corrosion ability of fungi in space stations is important to control their growth. Our research focuses on the interaction between mold and metals. In particular, it is found that metal ions promote mold growth and produce organic acids, thus accelerating mold corrosion of metals. Our results provide a new perspective for the control of fungal corrosion under simulated microgravity.
Assuntos
Ligas , Ausência de Peso , Ácidos , Ligas/química , Alumínio , Aspergillus , Ácido Cítrico , Cobre , Corrosão , Fungos , Ferro , OxalatosRESUMO
The present study was conducted to investigate the influence of microgravity on human gut microbiota using 16S rRNA gene sequencing in vitro. The diamagnetic material magnetic levitation method was used to simulate weightless environment. The human gut microbiota was cultured under two different conditions: normal gravity (1 g), and simulated microgravity (0 g), which showed that both the richness (P = 0.04) and diversity (P = 0.0002) of human gut microbiota were significantly altered. As compared to the normal gravity, the simulated microgravity significantly reduced abundance of bacteria related to anti-inflammatory effects, such as Subdoligranulum, Faecalibacterium, Fusicatenibacter, Butyricicoccus, and Lachnospiraceae-NK4A136-0 group (P < 0.05), while significantly increased that of Alistipes and Eubacterium-Ventriosum-group (P < 0.05). Moreover, the Spearman's correlation analysis showed that there were more significantly correlated species (|r|≥ 0.5, P < 0.05) in normal gravity than that in the simulated microgravity. KEGG pathway analysis revealed that the microgravity significantly (P < 0.05) affected the metabolism of gut microbiota, such as the metabolism of pyrimidine, fatty acids, glyoxylate and dicarboxylate, peptidoglycan biosynthesis, and carbon fixation in photosynthetic organisms. These results suggested that the exposure to a microgravity environment might induce disturbances in human gut microbiota. KEY POINTS: ⢠Using 16sRNA gene sequencing technology, it was found that magnetic levitation-simulated microgravity had varying degrees of influence on the abundance, diversity, species correlation, and KEGG pathways of human intestinal microbes. ⢠Digital PCR can improve the detection rate of microorganisms with low abundance.
Assuntos
Microbioma Gastrointestinal , Ausência de Peso , Bactérias/genética , Clostridiales/genética , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genéticaRESUMO
Dyes have become common substances since they are employed in mostly all objects surrounding our daily activities such as clothing and upholstery. Based on the usage and disposal of these objects, the transfer of the dyes to other media such as soil and water increases their prevalence in our environment. However, this prevalence could help to solve crimes and pollution problems if detection techniques are proper. For that reason, the detection and characterization of dyes in complex matrices is important to determine the possible events leading to their deposition (natural degradation, attempts of removal, possible match with evidence, among others). Currently, there are several chromatographic and mass spectrometric approaches used for the identification of these organic molecules and their derivatives with high specificity and accuracy. This review presents current chromatographic and mass spectrometric methods that are used for the detection and characterization of disperse, acid, basic, and reactive dyes, and their derivatives.
RESUMO
Atherosclerosis is one of the leading causes of morbidity and mortality, mainly due to the immune response triggered by the recruitment of monocytes/macrophages in the artery wall. Accumulating evidence have shown that matrix stiffness and oxidized low-density lipoproteins (ox-LDL) play important roles in atherosclerosis through modulating cellular behaviors. However, whether there is a synergistic effect for ox-LDL and matrix stiffness on macrophages behavior has not been explored yet. In this study, we developed a model system to investigate the synergistic role of ox-LDL and matrix stiffness on macrophage behaviors, such as migration, inflammatory and apoptosis. We found that there was a matrix stiffness-dependent behavior of monocyte-derived macrophages stimulated with ox-LDL. What's more, macrophages were more sensitive to ox-LDL on the stiff matrices compared to cells cultured on the soft matrices. Through next-generation sequencing, we identified miRNAs in response to matrix stiffness and ox-LDL and predicted pathways that showed the capability of miRNAs in directing macrophages fates. Our study provides a novel understanding of the important synergistic role of ox-LDL and matrix stiffness in modulating macrophages behaviors, especially through miRNAs signaling pathways, which could be potential key regulators in atherosclerosis and immune-targeted therapies.
Assuntos
Aterosclerose/genética , Matriz Extracelular/genética , Lipoproteínas LDL/genética , MicroRNAs/genética , Apoptose/genética , Aterosclerose/patologia , Movimento Celular/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/metabolismo , Transdução de Sinais/genéticaRESUMO
This study revealed that iturin A-like lipopeptides produced by Bacillus subtillis induced both paraptosis and apoptosis in heterogeneous human epithelial colorectal adenocarcinoma (Caco-2) cells. Autophagy was simultaneously induced in Caco-2 cells treated with iturin A-like lipopeptides at the early stage and inhibited at the later stage. A western blot analysis showed that the lipopeptides induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by upregulated expression of the apoptotic genes bax and bad and downregulated expression of the antiapoptotic gene bcl-2. The induction of paraptosis in Caco-2 cells was indicated by the occurrence of many cytoplasmic vacuoles accompanied by endoplasmic reticulum (ER) dilatation and mitochondrial swelling and dysfunction. ER stress also occurred with significant increases in reactive oxygen species and Ca2+ levels in cells. Autophagy was detected by a transmission electron microscopy analysis and by upregulated expression of LC3-II and downregulated expression of LC3-I. The inhibition of autophagy at the later stage was shown by upregulated expression of p62. This study revealed the capability of iturin A-like B. subtilis lipopeptides to simultaneously execute antitumor potential via multiple pathways.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Colorretais , Peptídeos Cíclicos/farmacologia , Bacillus subtilis , Células CACO-2 , HumanosRESUMO
Contamination by fungi may pose a threat to the long-term operation of the International Space Station because fungi produce organic acids that corrode equipment and mycotoxins that harm human health. Microgravity is an unavoidable and special condition in the space station. However, the influence of microgravity on fungal metabolism has not been well studied. Clinostat rotation is widely used to simulate the microgravity condition in studies carried out on Earth. Here, we used metabolomics differential analysis to study the influence of clinostat rotation on the accumulation of organic acids and related biosynthetic pathways in ochratoxin A (OTA)-producing Aspergillus carbonarius As a result, clinostat rotation did not affect fungal cell growth or colony appearance but significantly increased the accumulation of organic acids, particularly isocitric acid, citric acid, and oxalic acid, and OTA both inside cells and in the medium, as well as resulted in a much higher level of accumulation of some products inside than outside cells, indicating that the transport of these metabolites from the cell to the medium was inhibited. This finding corresponded to the change in the fatty acid composition of cell membranes and the reduced thickness of the cell walls and cell membranes. Amino acid and energy metabolic pathways, particularly the tricarboxylic acid cycle, were influenced the most during clinostat rotation compared to the effects of normal gravity on these pathways.IMPORTANCE Fungi are ubiquitous in nature and have the ability to corrode various materials by producing metabolites. Research on how the space station environment, especially microgravity, affects fungal metabolism is helpful to understand the role of fungi in the space station. This work provides insights into the mechanisms involved in the metabolism of the corrosive fungus Aspergillus carbonarius under simulated microgravity conditions. Our findings have significance not only for preventing material corrosion but also for ensuring food safety, especially in the space environment.
Assuntos
Ácidos/metabolismo , Aspergillus/metabolismo , Ausência de Peso , Vias Biossintéticas , Metabolômica , Ocratoxinas/metabolismoRESUMO
BACKGROUND: Alternaria sp. MG1, an endophytic fungus isolated from grape, is a native producer of resveratrol, which has important application potential. However, the metabolic characteristics and physiological behavior of MG1 still remains mostly unraveled. In addition, the resveratrol production of the strain is low. Thus, the whole-genome sequencing is highly required for elucidating the resveratrol biosynthesis pathway. Furthermore, the metabolic network model of MG1 was constructed to provide a computational guided approach for improving the yield of resveratrol. RESULTS: Firstly, a draft genomic sequence of MG1 was generated with a size of 34.7 Mbp and a GC content of 50.96%. Genome annotation indicated that MG1 possessed complete biosynthesis pathways for stilbenoids, flavonoids, and lignins. Eight secondary metabolites involved in these pathways were detected by GC-MS analysis, confirming the metabolic diversity of MG1. Furthermore, the first genome-scale metabolic network of Alternaria sp. MG1 (named iYL1539) was reconstructed, accounting for 1539 genes, 2231 metabolites, and 2255 reactions. The model was validated qualitatively and quantitatively by comparing the in silico simulation with experimental data, and the results showed a high consistency. In iYL1539, 56 genes were identified as growth essential in rich medium. According to constraint-based analysis, the importance of cofactors for the resveratrol biosynthesis was successfully demonstrated. Ethanol addition was predicted in silico to be an effective method to improve resveratrol production by strengthening acetyl-CoA synthesis and pentose phosphate pathway, and was verified experimentally with a 26.31% increase of resveratrol. Finally, 6 genes were identified as potential targets for resveratrol over-production by the recently developed methodology. The target-genes were validated using salicylic acid as elicitor, leading to an increase of resveratrol yield by 33.32% and the expression of gene 4CL and CHS by 1.8- and 1.6-fold, respectively. CONCLUSIONS: This study details the diverse capability and key genes of Alternaria sp. MG1 to produce multiple secondary metabolites. The first model of the species Alternaria was constructed, providing an overall understanding of the physiological behavior and metabolic characteristics of MG1. The model is a highly useful tool for enhancing productivity by rational design of the metabolic pathway for resveratrol and other secondary metabolites.
Assuntos
Alternaria/genética , Genoma Fúngico , Redes e Vias Metabólicas/genética , Vitis/microbiologia , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Propanóis/análise , Propanóis/química , Propanóis/metabolismo , Resveratrol/análise , Resveratrol/metabolismo , Estilbenos/análise , Estilbenos/metabolismo , Sequenciamento Completo do GenomaRESUMO
Due to increasingly limited water resources, diminishing farmland acreage, and potentially negative effects of climate change, an urgent need exists to improve agricultural productivity to feed the ever-growing population. Plants interact with microorganisms at all trophic levels, adapting growth, developmental, and defense responses within a complicated network of community members. Endophytic fungi have been widely reported for their ability to aid in the defense of their host plants. Currently, many reports focus on the application of endophytic fungi with the capability to produce valuable bioactive molecules, while others focus on endophytic fungi as biocontrol agents. Plant responses upon endophytic fungi colonization are also good for the immune system of the plant. In this paper, the possible mechanisms between endophytic fungi and their hosts were reviewed. During long-term evolution, plants have acquired numerous beneficial strategies in response to endophytic fungi colonization. The interaction of endophytic fungi with plants modulates the relationship between plants and both biotic and abiotic stresses. It has previously been reported that this endophytic relationship confers additional defensive mechanisms on the modulation of the plant immune system, as the result of the manipulation of direct antimicrobial metabolites such as alkaloids to indirect phytohormones, jasmonic acid, or salicylic acid. Furthermore, plants have evolved to cope with combinations of stresses and experiments are required to address specific questions related to these multiple stresses. This review summarizes our current understanding of the intrinsic mechanism to better utilize these benefits for plant growth and disease resistance. It contributes new ideas to increase plant fitness and crop productivity.
Assuntos
Endófitos/fisiologia , Fungos/fisiologia , Plantas/microbiologia , Anti-Infecciosos/metabolismo , Endófitos/metabolismo , Fungos/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/imunologia , Estresse Fisiológico , SimbioseRESUMO
Candida albicans is a fungal pathogen that is difficult to cure clinically. The current clinic C. albicans-inhibiting drugs are very harmful to humans. This study revealed the potential of iturin fractions from Bacillus subtilis to inhibit C. albicans in free status (MIC = 32 µg/mL) and natural biofilm in vitro. The inhibition mechanism was identified as an apoptosis pathway via the decrease of mitochondrial membrane potential, the increase of the reactive oxygen species (ROS) accumulation, and the induction of nuclear condensation. For in vivo experiments, the C. albicans infection model was constructed via intraperitoneal injection of 1 × 108C. albicans cells into mice. One day after the infection, iturin was used to treat infected mice at different concentrations alone and in combination with amphotericin B (AmB) by intraperitoneal injection. The treatment with AmB alone could cause the death of infected mice, whereas treatment with 15 mg/kg iturin per day alone led to the survival of all infected mice throughout the study. After continuously treated for 6 days, all mice were sacrificed and analyzed. As results, the combination of 15 mg/kg iturin and AmB at a ratio of 2:1 had the most efficient effect to remove the fungal burden in the kidney and cure the infected mice by reversing the symptoms caused by C. albicans infection, such as the loss of body weight, change of immunology cells in blood and cytokines in serum, and damage of organ structure and functions. Overall, iturin had potential in the development of efficient and safe drugs to cure C. albicans infection.
Assuntos
Antifúngicos/farmacologia , Bacillus subtilis/metabolismo , Candida albicans/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Animais , Antifúngicos/isolamento & purificação , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/uso terapêutico , Resultado do TratamentoRESUMO
Bacillus subtilis widely exists in environment and shows a capability to deal with heavy metals and dyes in polluted waters by adsorption or biological oxidation and reduction. Little is known about the roles of lipopeptides in this capability of B. subtilis. In this study, we found that the lipopeptides produced by B. subtilis could reduce silver ions to silver nanoparticles (AgNPs) and iturin was identified as the major effective fraction. Furthermore, the synthesized AgNPs was successfully used to catalyze the reduction of organic dyes and reduce Pb2+ contamination in water. The formation of AgNPs was confirmed by the features analyzed by UV-vis spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The formed AgNPs showed crystalline, with small size (~ 20 nm) and spherical shape. The biosynthesis of AgNPs was significantly accelerated by UV irradiation. A pH of 10 resulted in the highest formation rate, while pH 9.2 provided the most stability of AgNPs. In mechanisms, tyrosine and the polypeptide were identified as the major groups in iturin-A to form AgNPs via Ar-OH groups. The study revealed that iturin played important roles for the capability of B. subtilis to treat polluted water via a possible way by synthesizing AgNPs and then catalyzing the reduction of organic dyes and reducing the contamination of Pb2+.
Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Lipopeptídeos/metabolismo , Nanopartículas Metálicas/análise , Prata/metabolismo , Microbiologia da Água , Corantes/metabolismo , Inativação Metabólica , Chumbo/metabolismo , Nanopartículas Metálicas/ultraestrutura , OxirreduçãoRESUMO
Colorimetric, fluorescence, and paper-based method were developed to measure the Hg2+ level in water using iturin A, a lipopeptide produced by Bacillus subtilis. Firstly, iturin was used to synthesize highly stable and uniformly sized silver nanoparticles (AgNPs). Secondly, the iturin-AgNPs were found to be highly selective and sensitive to Hg2+. The absorbance of the reaction system showed a good linear correlation with the Hg2+ concentration from 0.5 to 5 mg/L at 450 nm in the UV-Vis spectroscopy detection with the limit of detection (LOD) of 0.5 mg/L. When the reaction system was detected by fluorescence measurement, a good linear relationship was found between the fluorescence intensity and Hg2+ concentration from 0.05 to 0.5 mg/ at 415 nm with the LOD of 0.05 mg/L. Lastly, a paper-based detection method was developed. The developed method was successfully used to detect Hg2+ in contaminated polluted waters and showed acceptable results in terms of sensitivity, selectivity and stability. The paper-based method could distinguish Hg2+ at levels higher than 0.05 mg/L, thereby meeting the guidelines of the effluent quality standard for industries (0.05 mg/L). In summary, this method can be used daily by various industries to monitor the Hg2+ level in effluent water.
Assuntos
Técnicas de Química Analítica/métodos , Colorimetria/métodos , Fluorometria/métodos , Mercúrio/análise , Peptídeos Cíclicos/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Bacillus subtilis/enzimologia , Nanopartículas Metálicas , Papel , Sensibilidade e EspecificidadeRESUMO
PURPOSE: This paper aims to summarize recent developments regarding the synthesis, application and challenges of fungal AgNPs. Possible methods to overcome the challenge of synthesis and reduce the toxicity of AgNPs have been discussed. MATERIALS AND METHODS: This review consults and summary a large number of papers. RESULTS: Silver nanoparticles (AgNPs) have great potential in many areas, as they possess multiple novel characteristics. Conventional methods for AgNPs biosynthesis involve chemical agents, causing environmental toxicity and high energy consumption. Fungal bioconversion is a simple, low-cost and energy-efficient biological method, which could successfully be used for AgNPs synthesis. Fungi can produce enzymes that act as both reducing and capping agents, to form stable and shape-controlled AgNPs. CONCLUSIONS: AgNPs have great potential in the medical and food industries, due to their antimicrobial, anticancer, anti-HIV, and catalytic activities. However, the observed in vitro and in vivo toxicity poses considerable challenges in the synthesis and application of AgNPs.
Assuntos
Anti-Infecciosos , Fungos/metabolismo , Nanopartículas Metálicas , Prata , Animais , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/metabolismo , Prata/toxicidadeRESUMO
Cancer is one of the most common causes of death worldwide. Extensive research has been conducted on cancer; regardless, the link between cancer and diet remains undetermined. Recent studies have emphasized the importance of miRNAs in cancer-associated pathways from the perspective of dietary modulation. We highlighted the recent data on dietary modulation of gut microbiota and miRNAs related to cancer on the basis of recently published results. The targets of miRNAs are oncogenes or tumor suppressors that mediate the progression and initiation of carcinogenesis. Different miRNAs display complex expression profiles in response to dietary manipulation. Various dietary components, such as fatty acids, resveratrol, isothiocyanate, and curcumin, have been effectively used in cancer prevention and treatment. This potency is attributed to the capability of these components to alter miRNA expression, thereby modulating the vital pathways involved in metastasis, invasion, apoptosis, tumor growth, and cell proliferation.