Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(18): 7328-7335, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067249

RESUMO

Here, using various substrates, we demonstrate that the in-plane uniaxial strain engineering can enhance the Jahn-Teller distortions and promote selective orbital occupancy to induce an emergent antiferromagnetic insulating (AFI) phase at x = 1/3 of La1-xCaxMnO3. Such an AFI phase depends not only on the magnitude of epitaxial strain but also on the symmetry of the substrates. Using the large uniaxial strain imparted by DyScO3(001) substrate, the AFI ground state is achieved in a wide range of doping levels (0 ≤ x ≤ 1/2), leaving an extended AFI phase diagram. Moreover, it is found that hydrostatic pressure can tune the AFI phase back to a hidden ferromagnetic metallic phase, accompanied by the formation of accommodation strain. The coaction of the accommodation strain, uniaxial strain, and hydrostatic pressure produces complex phase competition and evolution, and the result may shed light on phase space control of other functional perovskites with the competing magnetic interactions.

2.
Nano Lett ; 21(13): 5874-5880, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197120

RESUMO

The magnetic structures of MnBi2Te4(Bi2Te3)n can be manipulated by tuning the interlayer coupling via the number of Bi2Te3 spacer layers n, while the intralayer ferromagnetic (FM) exchange coupling is considered too robust to control. By applying hydrostatic pressure up to 3.5 GPa, we discover opposite responses of magnetic properties for n = 1 and 2. MnBi4Te7 stays at A-type antiferromagnetic (AFM) phase with a decreasing Néel temperature and an increasing saturation field. In sharp contrast, MnBi6Te10 experiences a phase transition from A-type AFM to a quasi-two-dimensional FM state with a suppressed saturation field under pressure. First-principles calculations reveal the essential role of intralayer exchange coupling from lattice compression in determining these magnetic properties. Such magnetic phase transition is also observed in 20% Sb-doped MnBi6Te10 because of the in-plane lattice compression.

3.
J Am Chem Soc ; 137(33): 10512-5, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26262431

RESUMO

By intercalation of alkaline earth metal Sr in Bi2Se3, superconductivity with large shielding volume fraction (∼91.5% at 0.5 K) has been achieved in Sr0.065Bi2Se3. Analysis of the Shubnikov-de Hass oscillations confirms the half-shift expected from a Dirac spectrum, giving transport evidence of the existence of surface states. Importantly, SrxBi2Se3 superconductor is stable under air, making SrxBi2Se3 an ideal material base for investigating topological superconductivity.

4.
Nat Commun ; 8: 14466, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198378

RESUMO

Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA