Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Angew Chem Int Ed Engl ; 61(39): e202206277, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35924720

RESUMO

Ferroptosis is a new form of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Its therapeutic potential is however, greatly limited by the low efficiency of regulating cell ferroptosis in vivo. Herein, we report a PROTAC-based protein degrader that depletes endogenous glutathione peroxidase 4 (GPX4) and induces cancer cell ferroptosis. We demonstrate that a rationally designed GPX4 degrader, dGPX4, can deplete tumor cell GPX4 via proteasomal protein degradation, showing a five-fold enhancement of ferroptosis induction efficiency compared to that of GPX4 inhibition using ML162. Moreover, we show that the intracellular delivery of dGPX4 using biodegradable lipid nanoparticles (dGPX4@401-TK-12) induces cell-selective ferroptosis by targeting cancer cell microenvironment. The in vivo administration of dGPX4@401-TK-12 effectively suppresses tumor growth without appreciable side effects. We anticipate the protein degradation strategy described herein could be easily expanded to other essential regulatory proteins of ferroptosis for developing targeted cancer therapeutics.


Assuntos
Ferroptose , Neoplasias , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Lipossomos , Nanopartículas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfolipídeos , Microambiente Tumoral
2.
Chembiochem ; 22(16): 2608-2613, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34155741

RESUMO

The conditional control of protein function in response to the physiological change of cells is of great interest for studying protein function in biological settings and developing protein therapeutics. We report herein that catalase (CAT) DNAzyme can potentiate the generation of reactive oxygen species (ROS) in living cells by knocking down catalase expression, which could further activate a reactive oxygen species (ROS)-responsive pro-protein, RNase A-NBC, in situ. Using an optimized lipid nanoparticle delivery system to simultaneously introduce CAT DNAzyme and RNase A-NBC into cells, we show that the pro-protein, RNase A-NBC, could be activated in a significantly enhanced manner to prohibit tumor cell growth in different types of cancer cells. We believe the methodology of regulating pro-protein activity using DNAzyme biocatalysis to differentiate intracellular environment could further be extended to other functional proteins, and even fundamental investigations in living systems to develop pro-protein therapeutics.


Assuntos
Lipossomos , Nanopartículas
3.
Nanotechnology ; 32(46)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34371485

RESUMO

Tumor angiogenesis has been identified as an important factor in the development and progression of tumors, and anti-angiogenesis therapy has been recognized as an effective tumor therapy pattern. The unique characteristics of nanodiamonds (NDs) have been explored for photothermal therapy (PTT) against cancer, while the efficiency of mild PTT mediated by bare NDs was limited. The combination of different therapies into a single nanoplatform has shown great potential for synergistic cancer treatment. In this investigation, we integrated hydrophobic antiangiogenesis agent combretastatin A4 (CA4) into the protamine sulfate (PS) functionalized NDs hybrids (NDs@PS) with a noncovalent self-assembling method (CA4-NDs@PS) for potential combined anti-angiogenesis and mild PTT in liver cancer. The resulted CA4-NDs@PS NDs exhibited high drug loading ability, good dispersibility and colloidal stability. The near-infrared (NIR) laser irradiation could trigger the release of CA4 from CA4-NDs@PS NDs and elevate the temperature of CA4-NDs@PS NDs aqueous solution.In vitroresults illustrated that CA4-NDs@PS coupled with laser irradiation could remarkably enhance HepG-2 cells killing efficiency, leading to an enhanced photocytotoxicity. Furthermore,in vivoexperiments revealed that CA4-NDs@PS exhibited a highly synergistic anticancer efficacy with NIR laser irradiation in HepG-2 tumor-bearing mice. Altogether, our present study fabricated a novel NDs@PS-based nanoplatform for combined anti-tumor angiogenesis and mild PTT against liver cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanodiamantes/uso terapêutico , Protaminas/farmacologia , Estilbenos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Terapia Fototérmica/métodos
4.
Angew Chem Int Ed Engl ; 60(51): 26740-26746, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34622541

RESUMO

The delivery of protein into mammalian cells enables the dissection and manipulation of biological processes; however, this potency is challenged by the lack of an efficient protein delivery tool and a means to monitor its intracellular trafficking. Herein, we report that the hierarchical self-assembly of tetraphenylethylene (TPE)-featured metal-organic cages (MOCs) and ß-cyclodextrin-conjugated polyethylenimine can generate fluorescent supramolecular nanoparticles (FSNPs) to deliver protein into neural cells, a cell line that is hard to transfect using conventional strategy. Further, the aggregation-induced emission (AIE) of TPE enabled the fluorescent monitoring of cytosolic protein release. It is found that FSNPs can deliver and release protein into cytosol for subcellular targeting as fast as 18 h post-delivery. Moreover, the delivery of molecular chaperone DJ-1 using FSNPs activates MAPK/ERK signaling of neural cells to protect cells from oxidative stress.


Assuntos
Corantes Fluorescentes/farmacologia , Nanopartículas/química , Células-Tronco Neurais/efeitos dos fármacos , Estilbenos/farmacologia , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Células-Tronco Neurais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Estilbenos/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
5.
J Nanobiotechnology ; 17(1): 23, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711005

RESUMO

BACKGROUND: In recent years, multifunctional theranostic nanoparticles have been fabricated by integrating imaging and therapeutic moieties into one single nano-formulations. However, Complexity of production and safety issues limits their further application. RESULTS: Herein, we demonstrated self-assembled nanoparticles with single structure as a "from one to all" theranostic platform for tumor-targeted dual-modal imaging and programmed photoactive therapy (PPAT). The nanoparticles were successfully developed through self-assembling of hyaluronic acid (HA)-cystamine-cholesterol (HSC) conjugate, in which IR780 was simultaneously incorporated (HSCI NPs). Due to the proper hydrodynamic size and intrinsic targeting ability of HA, the HSCI NPs could accumulate at the tumor site effectively after systemic administration. In the presence of incorporated IR780, in vivo biodistribution and accumulation behaviors of HSCI NPs could be monitored by photoacoustic imaging. After cellular uptake, the HSCI NPs would disintegrate resulting from cystamine reacting with over-expressed GSH. The released IR780 would induce fluorescence "turn-on" conversion, which could be used to image tumor sites effectively. Upon treatment with 808 nm laser irradiation, PPAT could be achieved in which generated reactive oxygen species (ROS) would produce photodynamic therapy (PDT), and subsequently the raised temperature would be beneficial to tumor photothermal therapy (PTT). CONCLUSION: The self-assembled HSCI NPs could act as "from one to all" theranostic platform for high treatment efficiency via PPAT pattern, which could also real-time monitor NPs accumulation by targeted and dual-modal imaging in a non-invasive way.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Colesterol/química , Cistamina/química , Feminino , Humanos , Ácido Hialurônico/química , Indóis/química , Camundongos , Camundongos Nus , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Técnicas Fotoacústicas , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Small ; 14(12): e1703045, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29405618

RESUMO

In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self-sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)-poly(ε-caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys-Arg-Gly-Asp-Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.


Assuntos
Nanopartículas/química , Oxigênio/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Hipóxia Celular/fisiologia , Fluorocarbonos/química , Humanos , Hidrocarbonetos Bromados , Espécies Reativas de Oxigênio/metabolismo
7.
ACS Nano ; 18(24): 15607-15616, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838347

RESUMO

Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.


Assuntos
Neurônios , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Neurônios/metabolismo , Camundongos , Humanos , Grafite/química , Grafite/farmacologia , Polietilenoglicóis/química , Transdutores
8.
ACS Appl Mater Interfaces ; 15(20): 24175-24185, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186879

RESUMO

Stimuli-responsive hydrogels are a class of important materials for the preparation of flexible sensors, but the development of UV/stress dual-responsive ion-conductive hydrogels with excellent tunability for wearable devices remains a major challenge. In this study, a dual-responsive multifunctional ion-conductive hydrogel (PVA-GEL-GL-Mo7) with high tensile strength, good stretchability, outstanding flexibility, and stability is successfully fabricated. The prepared hydrogel has an excellent tensile strength of 2.2 MPa, high tenacity of 5.26 MJ/m3, favorable extensibility (522%), and high transparency of 90%. Importantly, the hydrogels have dual responsiveness to UV light and stress, allowing it to be used as a wearable device while responding differently to the UV intensity of different outdoor environments (hydrogels can show different levels of color when exposed to different light intensities of UV light) and can remain flexible at -50 and 85 °C (sensing at both -25 and 85 °C). Therefore, the hydrogels developed in this study have good prospects in different applications, such as flexible wearable devices, duplicate paper, and dual-responsive interactive devices.

9.
Biomater Sci ; 11(9): 3172-3179, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36919841

RESUMO

Bacterial effector proteins are virulence factors that are secreted and mediate orthogonal post-translational modifications of proteins that are not found naturally in mammalian systems. They hold great promise for developing biotherapeutics by regulating malignant cell signaling in a specific and targeted manner. However, delivering bacterial effectors into disease cells poses a significant challenge to their therapeutic potential. In this study, we report on the design of a combinatorial library of bioreducible lipid nanoparticles containing disulfide bonds for highly efficient bacterial effector delivery and potential cancer therapy. A leading lipid, PPPDA-O16B, identified from the library, can encapsulate and deliver DNA plasmids into cells. The gene cargo is released in response to the reductive cellular environment that is upregulated in cancer cells, leading to enhanced gene delivery and protein expression efficiency. Furthermore, we demonstrate that PPPDA-O16B can deliver the bacterial effector protein, DUF5, to degrade mutant RAS and inactivate downstream MAPK signaling cascades to suppress cancer cell growth in vitro and in tumor-bearing mouse xenografts. This strategy of delivering bacterial effectors using biodegradable lipid nanoparticles can be expanded for cancer cell signaling regulation and antitumor studies.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Humanos , Animais , Técnicas de Transferência de Genes , Nanopartículas/química , Terapia Genética , Proteínas de Bactérias , Neoplasias/tratamento farmacológico , Mamíferos
10.
J Mater Chem B ; 11(36): 8649-8656, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37623744

RESUMO

Charge-transfer (CT) cocrystals consisting of an electron donor and acceptor have gained attention for designing photothermal (PT) conversion materials with potential for biomedical and therapeutic use. However, the applicability of CT cocrystals is limited by their low stability and aqueous dispersity in biological settings. In this study, we present the self-assembly of CT cocrystals within hydrogen-bonded organic frameworks (HOFs), which not only allows for the dispersion and stabilization of cocrystals in aqueous solution but also promotes the CT interaction within the confined space of HOFs for photothermal conversion. We demonstrate that the CT interaction-driven self-assembly of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) with PFC-1 HOFs results in the formation of cocrystal-encapsulated TQC@PFC-1 while retaining the crystalline structure of the cocrystal and PFC-1. TQC@PFC-1, in particular, exhibits significant absorption in the second near-infrared region (NIR-II) and excellent photothermal conversion efficiency, as high as 32%. Cellular delivery studies show that TQC@PFC-1 can be internalized in different types of cancer cells, leading to an effective NIR-II photothermal therapy effect both in cultured cells and in vivo. We anticipate that the strategy of self-assembly and stabilization of CT cocrystals in nanoscale HOFs opens the path for tuning their photophysical properties and interfacing cocrystals with biological settings for photothermal therapeutic applications.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Neoplasias/tratamento farmacológico , Hidrogênio
11.
Polymers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566982

RESUMO

Multifunctional theranostic nanomaterial represents one type of emerging agent with the potential to offer both sensitive diagnosis and effective therapy. Herein, we report a novel drug/siRNA co-delivery nanocarrier, which is based on fluorescent mesoporous core-shell silica nanoparticles coated by cross-linked polyethylenimine. The fluorescent mesoporous core-shell silica nanoparticles can provide numerous pores for drug loading and negative charged surface to assemble cross-linked polyethylenimine via electrostatic interaction. Disulfide cross-linked polyethylenimine can be absorbed on the surface of silica nanoparticles which provide the feasibility to bind with negatively charged siRNA and release drug "on-demand". In addition, the hybrid nanoparticles can be easily internalized into cells to realize drug/siRNA co-delivery and therapeutic effect imaging. This work would stimulate interest in the use of self-assembled cross-linked polyethylenimine with fluorescent mesoporous core-shell silica nanoparticles to construct multifunctional nanocomposites for tumor therapy.

12.
ACS Appl Mater Interfaces ; 14(42): 47472-47481, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36227724

RESUMO

Pyroptosis is a new type of regulated cell death that is of great interest for developing new strategies for treating cancers. This potential is however greatly limited by the low efficiency and selectivity of current strategies to regulate cancer cell pyroptosis. Herein, we report biodegradable metal-organic frameworks (MOFs) for intracellular delivery of glucose oxidase (GOx) that promotes cascade biocatalysis inside cells and selectively induces cancer cell pyroptosis. We show that the self-assembly of Cu2+ and 4,4'-azobisbenzoic acid along with GOx affords protein-encapsulated GOx@Cu MOF that efficiently delivers GOx into cells. In addition, the tumor-cell-overexpressed NAD(P)H quinone dehydrogenase 1 (NQO1) can trigger the reduction of 4,4'-azobisbenzoic acid and the degradation of GOx@Cu MOF, releasing GOx to catalyze glucose oxidation and produce excessive hydrogen peroxide (H2O2) intracellularly. Furthermore, released Cu2+ from Cu MOF could be reduced to Cu+ by intracellular glutathione (GSH), promoting Fenton-like reaction with H2O2 to continuously generate a hydroxyl radical that induces cancer cell pyroptosis and prohibits tumor cell growth. We anticipate the strategy of harnessing biodegradable MOFs for protein delivery, and intracellular biocatalysis provides a powerful approach to regulate tumor cell pyroptosis for advanced therapeutic development.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/metabolismo , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Biocatálise , Radical Hidroxila/metabolismo , Piroptose , NAD/metabolismo , Glucose/metabolismo , Neoplasias/patologia , Glutationa/metabolismo , Quinonas
13.
Chem Sci ; 13(19): 5606-5615, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694341

RESUMO

Singlet oxygen (1O2) as an excited electronic state of O2 plays a significant role in ubiquitous oxidative processes from enzymatic oxidative metabolism to industrial catalytic oxidation. Generally, 1O2 can be produced through thermal reactions or the photosensitization process; however, highly selective generation of 1O2 from O2 without photosensitization has never been reported. Here, we find that single-atom catalysts (SACs) with atomically dispersed MN4 sites on hollow N-doped carbon (M1/HNC SACs, M = Fe, Co, Cu, Ni) can selectively activate O2 into 1O2 without photosensitization, of which the Fe1/HNC SAC shows an ultrahigh single-site kinetic value of 3.30 × 1010 min-1 mol-1, representing top-level catalytic activity among known catalysts. Theoretical calculations suggest that different charge transfer from MN4 sites to chemisorbed O2 leads to the spin-flip process and spin reduction of O2 with different degrees. The superior capacity for highly selective 1O2 generation enables the Fe1/HNC SAC as an efficient non-radiative therapeutic agent for in vivo inhibition of tumor cell proliferation.

14.
Biomater Sci ; 9(10): 3838-3850, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33885068

RESUMO

Uniting combinational strategies has been confirmed to be a robust choice for high-performance cancer treatment due to their abilities to overcome tumor heterogeneity and complexity. However, the development of a simple, effective, and multifunctional theranostics nanoplatform still remains a challenge. In this study, we integrated multicomponent hyaluronic acid (HA), protamine (PS), nanodiamonds (NDs), curcumin (Cur), and IR780 into a single nanoplatform (denoted as HPNDIC) based on the combination of hydrophobic and electrostatic noncovalent interactions for dual-modal fluorescence/photoacoustic imaging guided ternary collaborative Cur/photothermal/photodynamic combination therapy of triple-negative breast cancer (TNBC). A two-step coordination assembly strategy was utilized to realize this purpose. In the first step, PS was utilized to modify the NDs clusters to form positively charged PS@NDs (PND) and the simultaneous encapsulation of the natural small-molecule drug Cur and the photosensitive small-molecule IR780 (PNDIC). Second, HA was adsorbed onto the outer surface of the PNDIC through charge complexation for endowing a tumor-targeting ability (HPNDIC). The resulting HPNDIC had a uniform size, high drug-loading ability, and excellent colloidal stability. It was found that under the near-infrared irradiation condition, IR780 could be triggered to exhibit both PTT/PDT dual-pattern therapy effects, leading to an enhanced therapy efficiency of Cur both in vitro and in vivo with good biocompatibility. Due to the intrinsic imaging property of IR780, the biodistribution and accumulation behavior of HPNDIC in vivo could be monitored by dual-modal fluorescence/photoacoustic imaging. Taken together, our current work demonstrated the assembly of a NDs-based multicomponent theranostic platform for dual-modal fluorescence/photoacoustic imaging guided triple-collaborative Cur/photothermal/photodynamic against TNBC.


Assuntos
Nanodiamantes , Nanopartículas , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia , Nanomedicina Teranóstica , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
15.
Biomater Sci ; 8(24): 7132-7144, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33150879

RESUMO

The synergistic combination of microRNA (miRNA) modulation and chemotherapy has emerged as an effective strategy to combat cancer. Irinotecan (IRI) is a potent antitumor chemotherapeutic in clinical practice and has been used for treating various malignant tumors, including colorectal cancer (CRC). However, IRI is not effective for advanced CRC or metastatic behavior. Herein, novel polymeric hybrid micelles were engineered based on two different amphiphilic copolymers, polyethyleneimine-poly(d,l-lactide) (PEI-PLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethyleneglycol) (DSPE-PEG), in which IRI and a tumor suppressive microRNA-34a (miR-34a) gene were efficiently co-loaded (MINPs) to achieve a chemo-miRNA combination therapy against CRC. MINPs were successfully constructed by two-step film dispersion and electrostatic interaction methods. IRI and miR-34a could be efficaciously encapsulated as MINPs and transferred to CRC cells. After encapsulation, MINPs would then upregulate miR-34a expression and regulate miR-34a-related downstream genes, which in turn led to enhanced cell cytotoxicity and apoptosis ratios. MINPs presented an excitation-dependent multi-wavelength emission feature due to the intrinstic fluorescence properties of PEI-PLA and could be utilized for in vitro/vivo imaging. According to the in vivo experimental results, MINPs possess the great characteristic of accumulating in situ in a tumor site and lightening it after intravenous administration. Furthermore, MINPs presented extraordinary antitumor efficacy owing to the combined therapy effects of IRI and miR-34a with good biocompability. Overall, our findings validated MINPs-mediated miR-34a replenishment and IRI co-delivery to serve as an effective theranostic platform and provided an innovative horizon for combining chemo-gene therapy against CRC.


Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Irinotecano/administração & dosagem , MicroRNAs , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Micelas , MicroRNAs/genética , Medicina de Precisão
16.
Theranostics ; 10(16): 7273-7286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32641992

RESUMO

Rattle-structured nanoparticles with movable cores, porous shells and hollow interiors have shown great effectiveness in drug delivery and cancer theranostics. Targeting autophagy and glucose have provided alternative strategies for cancer intervention therapy. Herein, rattle-structured polydopamine@mesoporous silica nanoparticles were prepared for in vivo photoacoustic (PA) imaging and augmented low-temperature photothermal therapy (PTT) via complementary autophagy inhibition and glucose metabolism. Methods: The multifunctional rattle-structured nanoparticles were designed with the nanocore of PDA and the nanoshell of hollow mesoporous silica (PDA@hm) via a four-step process. PDA@hm was then loaded with autophagy inhibitor chloroquine (CQ) and conjugated with glucose consumer glucose oxidase (GOx) (PDA@hm@CQ@GOx), forming a corona-like structure nanoparticle. Results: The CQ and GOx were loaded into the cavity and decorated onto the surface of PDA@hm, respectively. The GOx-mediated tumor starvation strategy would directly suppress the expression of HSP70 and HSP90, resulting in an enhanced low-temperature PTT induced by PDA nanocore. In addition, autophagy inhibition by the released CQ made up for the loss of low-temperature PTT and starvation efficiencies by PTT- and starvation-activated autophagy, realizing augmented therapy efficacy. Furthermore, the PDA nanocore in the PDA@hm@CQ@GOx could be also used for PA imaging. Conclusion: Such a "drugs" loaded rattle-structured nanoparticle could be used for augmented low-temperature PTT through complementarily regulating glucose metabolism and inhibiting autophagy and in vivo photoacoustic imaging.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cloroquina/administração & dosagem , Cloroquina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Glucose Oxidase/administração & dosagem , Glucose Oxidase/farmacocinética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hipotermia Induzida/métodos , Indóis/química , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/patologia , Terapia Fototérmica/métodos , Polímeros/química , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biomaterials ; 194: 105-116, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30590240

RESUMO

Aberrant regulation of angiogenesis supply sufficient oxygen and nutrients to exacerbate tumor progression and metastasis. Taking this hallmark of cancer into account, reported here is a self-monitoring and triple-collaborative therapy system by auto-fluorescent polymer nanotheranostics which could be concurrently against angiogenesis and tumor cell growth by combining the benefits of anti-angiogenesis, RNA interfere and photothermal therapy (PTT). Auto-fluorescent amphiphilic polymer polyethyleneimine-polylactide (PEI-PLA) with positive charge can simultaneously load hydrophobic antiangiogenesis agent combretastatin A4 (CA4), NIR dye IR825 and absorb negatively charged heat shock protein 70 (HSP70) inhibitor (siRNA against HSP70) to construct self-monitoring nanotheranostics (NPICS). NPICS can effectively restrain the expression of HSP70 to reduce their endurance to the IR825-mediated PTT, leading to an enhanced photocytotoxicity. In a xenograft mouse tumor model, NPICS show an effect of inhibition of tumor angiogenesis and also display a highly synergistic anticancer efficacy with NIR laser irradiation. Significantly, based on its inherent auto-fluorescence, PEI-PLA not only serves as the drug carrier, but also as the self-monitor to real-time track NPICS biodistribution and tumor accumulation via fluorescence imaging. Moreover, IR825 endows NPICS could also be used as photoacoustic (PA) agents for in vivo PA imaging. This nanoplatform shows enormous potentials in cancer theranostics.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bibenzilas/uso terapêutico , Neoplasias da Mama/terapia , Corantes Fluorescentes/uso terapêutico , Nanopartículas/uso terapêutico , Polietilenoimina/uso terapêutico , Animais , Benzoatos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP72/genética , Humanos , Hipertermia Induzida , Indóis/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Técnicas Fotoacústicas , Poliésteres/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi , Nanomedicina Teranóstica
18.
Biomater Sci ; 7(7): 3016-3024, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134990

RESUMO

Unconventional non-conjugated photoluminescent polymers have attracted increasing attention in bioimaging application, however their nonclassical photoluminescence mechanisms remain largely unclear. Herein, an amphiphilic copolymer polyethyleneimine-poly(d,l-lactide) (PEI-PDLLA) was synthesized and the obtained PEI-PDLLA copolymer exhibited intrinsic visible blue luminescence in the solid and concentrated solution states under 365 nm UV light irradiation. Using a computational assay approach, we investigated the unconventional photoluminescence mechanism of PEI-PDLLA. The results revealed that such photoluminescence should be related to the "clustered heteroatom chromophores" formed by through-space electronic interactions of N-heteroatoms in PEI. The copolymers can function as a fluorescent nanoprobe (PEI-PDLLA NPs) via a facile nanoprecipitation method and the self-assembly mechanism of PEI-PDLLA NPs was also investigated in-depth by molecular dynamics simulation. Intriguingly, the PEI-PDLLA NPs exhibited a remarkable excitation-dependent multi-wavelength emission characteristic, which was promising in acquiring a high precision imaging effect. Moreover, in contrast with conventional organic dyes with aggregation-caused quenching (ACQ), the fluorescence intensity of the PEI-PDLLA NPs was enhanced with increasing solution concentration. Furthermore, their applications in bioimaging indicated that PEI-PDLLA NPs could be utilized as a lysosome-specific and tumor-targeted nanoprobe with excellent photostability and good biocompatibility.


Assuntos
Substâncias Luminescentes/química , Imagem Molecular/métodos , Nanopartículas/química , Poliésteres/química , Polietilenoimina/química , Animais , Linhagem Celular Tumoral , Humanos , Teste de Materiais , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular
19.
J Agric Food Chem ; 66(11): 2616-2622, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29485869

RESUMO

Pesticide carrier systems are highly desirable in achieving the effective utilization of pesticides and reduction of their loss. In order to increase utilization and enhance pesticide adhesion to harmful targets, adhesive and stimulus-responsive nanocomposites were prepared using graphene oxide (GO) and polydopamine (PDA). The results demonstrated that graphene oxide with a layer of PDA had a high hymexazol-loading capacity. The release curve of hymexazol from the nanocomposite showed that the release was NIR-laser-dependent and pH-dependent. The adhesion-performance investigation demonstrated that Hy-GO@PDA exhibited greater hymexazol persistence than a hymexazol solution after a simulated-rainwash experiment, and it also left more hymexazol residue than a hymexazol solution with a surfactant under high concentrations. Finally, the bioactivity of the prepared hymexazol-loaded nanocomposite was measured against Fusarium oxysporum f. sp. cucumebrium Owen, and it showed an inhibition activity similar to that of the hymexazol solution. All of these revealed that GO with a PDA layer could serve as pesticide carrier to solve low-utilization and wash-off problems, especially for water-soluble pesticides.


Assuntos
Grafite/química , Indóis/química , Óxidos/química , Praguicidas/química , Polímeros/química , Adesivos/química , Composição de Medicamentos , Cinética
20.
Biomaterials ; 167: 205-215, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571055

RESUMO

Chemodrugs have been widely used to treat cancer; however, the chemotherapy usually leads to serious side effects and failure. Various nanomaterials and strategies have been explored for drug delivery to improve the efficacy of chemodrugs. One key to loading chemodrugs onto a nano-delivery system is enhancement of the encapsulation efficiency, especially for polymeric nanoparticles being loaded with hydrophilic drugs. Inspired by the ability of eukaryote to package millions of genes in the nucleus wrapping and condensing DNA around histones to form chromosomes, here we developed a karyon-like hybrid nanoparticle to achieve ultra-high encapsulation of doxorubicin (Dox) with reduced side effects. We utilized fullerenol as a "histone", packaged a great number of Dox, and used PEG-PLGA as the "karyotheca" coating the "nucleosome" (fullerenol and Dox complex) to stabilize the complex. It is noteworthy that the encapsulation efficiency of Dox in the polymeric micelles was increased from ∼5% to ∼79%. What's more, the biomimetic-inspired delivery system significantly reduced the chemodrug side effects by utilizing the radical scavenging ability of fullerenol. This novel drug-delivery design approach provides useful insights for improving the applicability of fullerenol in drug delivery systems for cancer therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Fulerenos/química , Neoplasias Mamárias Animais/tratamento farmacológico , Poliésteres/química , Polietilenoglicóis/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Neoplasias Mamárias Animais/patologia , Camundongos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA