RESUMO
Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.
RESUMO
Electrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen1-7; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and corrosion issues arising from the complex components of seawater. Although catalyst engineering using polyanion coatings to suppress corrosion by chloride ions or creating highly selective electrocatalysts has been extensively exploited with modest success, it is still far from satisfactory for practical applications8-14. Indirect seawater splitting by using a pre-desalination process can avoid side-reaction and corrosion problems15-21, but it requires additional energy input, making it economically less attractive. In addition, the independent bulky desalination system makes seawater electrolysis systems less flexible in terms of size. Here we propose a direct seawater electrolysis method for hydrogen production that radically addresses the side-reaction and corrosion problems. A demonstration system was stably operated at a current density of 250 milliamperes per square centimetre for over 3,200 hours under practical application conditions without failure. This strategy realizes efficient, size-flexible and scalable direct seawater electrolysis in a way similar to freshwater splitting without a notable increase in operation cost, and has high potential for practical application. Importantly, this configuration and mechanism promises further applications in simultaneous water-based effluent treatment and resource recovery and hydrogen generation in one step.
RESUMO
One challenge for the commercial development of solid oxide fuel cells as efficient energy-conversion devices is thermo-mechanical instability. Large internal-strain gradients caused by the mismatch in thermal expansion behaviour between different fuel cell components are the main cause of this instability, which can lead to cell degradation, delamination or fracture1-4. Here we demonstrate an approach to realizing full thermo-mechanical compatibility between the cathode and other cell components by introducing a thermal-expansion offset. We use reactive sintering to combine a cobalt-based perovskite with high electrochemical activity and large thermal-expansion coefficient with a negative-thermal-expansion material, thus forming a composite electrode with a thermal-expansion behaviour that is well matched to that of the electrolyte. A new interphase is formed because of the limited reaction between the two materials in the composite during the calcination process, which also creates A-site deficiencies in the perovskite. As a result, the composite shows both high activity and excellent stability. The introduction of reactive negative-thermal-expansion components may provide a general strategy for the development of fully compatible and highly active electrodes for solid oxide fuel cells.
RESUMO
Although they are emerging technologies for achieving high-efficiency and green and eco-friendly energy conversion, ceramic electrochemical cells (CECs), i.e. solid oxide electrolysis cells (SOECs) and fuel cells (SOFCs), are still fundamentally limited by their inferior catalytic activities at low temperature, poor thermo-mechanical stability, high material cost, etc. The materials used in electrolytes and electrodes, which are the most important components in CECs, are highly associated with the cell performances. Therefore, rational design of electrolytes and electrodes with excellent catalytic activities and high stabilities at relatively low cost is a meaningful and valuable approach for the development of CECs. Nanotechnology is a powerful tool for improving the material performances in CECs owing to the favourable effects induced by the nanocrystallization of electrolytes and electrodes. Herein, a relatively comprehensive review on the nanotechnologies implemented in CECs is conducted. The working principles of CECs and the corresponding challenges were first presented, followed by the comprehensive insights into the working mechanisms of nanocrystalline materials in CECs. Then, systematic summarization and analyses of the commonly used nano-engineering strategies in the fabrication of CEC materials, including physical and chemical methods, were provided. In addition, the frontiers in the research of advanced electrolyte and electrode materials were discussed with a special emphasis on the modified electrochemical properties derived from nanotechnologies. Finally, the bottlenecks and the promising breakthroughs in nanotechnologies were highlighted in the direction of providing useful references for rational design of nanomaterials for CECs.
RESUMO
Surface chemistry of colloidal semiconductor nanocrystals (NCs) is of paramount importance because it profoundly impacts their physical and chemical properties, processing, and performance. Herein, we report the effect of the shape of ZnS NCs in terms of nanodots, nanorods, and nanoplatelets (NPL) on the surface ligand density (LD) of the commonly used oleylamine (OLA) ligand by combining three experimental quantification techniques (e.g., thermogravimetric analysis-differential scanning calorimetry, 1H nuclear magnetic resonance spectroscopy, and inductively coupled plasma-optical emission spectrometry) with the semiempirical molecular dynamics (MD) simulations. Consistent results on the surface LD derived by the aforementioned three independent techniques were obtained, presenting an ascending order of LDdots < LDrods < LDNPLs. MD simulations reveal that the highest LD for ZnS NPLs can be attributed to their extremely flat and uniform surfaces with regular distribution of surface Zn atoms for the OLA molecules to achieve parallel and tight stacking, while for ZnS nanodots and nanorods, their surfaces may have staggered arrangement and multisteps, making it unlikely for the OLA ligand to adopt the tight ligand stacking mode. The finding revealed in this work not only sheds light on the constitution of the molecule ligand shell of NCs, which is helpful for their rational morphology control, but also provides an additional and important knob for tuning their chemical functionality.
RESUMO
Perovskite solar cells (PSCs) have achieved revolutionary progress during the past decades with a rapidly boosting rate in power conversion efficiencies from 3.8% to 26.1%. However, high-efficiency PSCs with organic hole-transporting materials (HTMs) suffer from inferior long-term stability and high costs. The replacement of organic HTMs with inorganic counterparts such as metal oxides can solve the above-mentioned problems to realize highly robust and cost-effective PSCs. Nevertheless, the widely used simple metal oxide-based HTMs are limited by the low conductivity and poor light transmittance due to the fixed atomic environment. As an emerging family of inorganic HTMs, complex metal oxides with superior structural/compositional flexibility have attracted rapidly increasing interest recently, showing superior carrier conductivity/mobility and superb light transmittance. Herein, the recent advancements in the design and development of complex metal oxide-based HTMs for high-performance PSCs are summarized by emphasizing the superiority of complex metal oxides as HTMs over simple metal oxide-based counterparts. Consequently, several distinct strategies for the design of complex metal oxide-based HTMs are proposed. Last, the future directions and remaining challenges of inorganic complex metal oxide-based HTMs for PSCs are also presented. This review aims to provide valuable guidelines for the further advancements of robust, high-efficiency, and low-cost PSCs.
RESUMO
The activation of nitrogen (N2) is vital for sustainable ammonia production and nitrogen fixation technologies. This study employs density functional theory (DFT) to investigate the nitrogen activation and reduction capabilities of Group VIII single-atom catalysts anchored on MoS2. Among these, osmium anchored on MoS2 (Os@MoS2) emerged as the most promising catalyst, exhibiting the highest N2 activation and the lowest nitrogen reduction reaction (NRR) overpotential (0.624 V). A pronounced "electron drift" effect was observed for Os@MoS2, leading to significant charge redistribution that weakens the N ≡ N triple bond, facilitating its activation. The N-N dissociation energy barrier at the *N-NH2 intermediate was calculated to be only 0.82 eV, confirming Os@MoS2's superior catalytic efficiency. Detailed analyses, including electrostatic potential maps, electron localization functions, spin density, and charge transfer, revealed the pivotal role of orbital interactions in driving N2 activation. Interestingly, the trends in adsorbed N2 bond energies and NRR overpotentials showed a consistent diagonal pattern across the Group VIII catalysts, emphasizing the importance of electronic and geometric factors. This work offers valuable insights into nitrogen activation mechanisms and provides a framework for designing efficient catalysts, highlighting Os@MoS2's potential in sustainable ammonia synthesis.
RESUMO
Photocorrosion is the most ticklish problem of cuprous oxide (Cu2O), and it is widely assumed that the deactivation of Cu2O photocathodes in solar water splitting is caused by spontaneous oxidation-reduction (REDOX) reactions. However, this work shows that ã100ã-oriented Cu2O photocathodes undergo a non-REDOX hydration deactivation mechanism. Briefly, water molecules are embedded in the Cu2O crystals at low potential under illumination and produce amorphous CuOH, which can be dehydrated at high potential to heal the Cu-O-Cu bonds and regenerate foamed Cu2O films with a three-dimensional skeleton structure. This study provides a new insight towards the protection and application of Cu2O photocathodes.
RESUMO
An effective strategy to facilitate oxygen redox chemistry in metal-air batteries is to introduce a redox mediator into the liquid electrolyte. The rational utilization of redox mediators to accelerate the charging kinetics while ensuring the long lifetime of alkaline Zn-air batteries is challenging. Here, we apply commercial acetylene black catalysts to achieve an I3--mediated Zn-air battery by using ZnI2 additives that provide I3- to accelerate the cathodic redox chemistry and regulate the uniform deposition of Zn2+ on the anode. The Zn-air battery performs an ultra-long cycle life of over 600 h at 5 mA cm-2 with a final charge voltage of 1.87 V. We demonstrate that I- mainly generates I3- on the surface of carbon catalysts during the electrochemically charging process, which can further chemically react with OH- to generate oxygen and further revert to I-, thus obtaining a stable electrochemical system. This work offers a strategy to simultaneously improve the cycling life and reduce the charging voltage of Zn-air batteries through redox mediator methods.
RESUMO
Nanostructured anodes generate massive reaction sites to oxidize fuels in solid oxide fuel cells (SOFCs); however, the nonexistence of a practically viable approach for the construction of nanostructures and the retention of these nanostructures under the harsh operating conditions of SOFCs poses a significant challenge. Herein, a simple procedure is reported for the construction of a nanostructured Ni-Gd-doped CeO2 anode based on the direct assembly of pre-formed nanocomposite powder with strong metal-oxide interaction. The directly assembled anode forms heterointerfaces with the electrolyte owing to the electrochemical polarization current and exhibits excellent structural robustness against thermal ripening. An electrolyte-supported cell with the directly assembled anode produces a peak power density of 0.73 W cm-2 at 800 °C, while maintaining stability for 100 h, which is in contrast to the drastic degradation of the cermet anode prepared using the conventional method. These findings provide clarity on the design and construction of durable nanostructured anodes and other electrodes for SOFCs.
RESUMO
Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn-Teller distortion caused by high-spin Mn3+ (t2g 3 eg 1 ) destabilizes the host structure and reduces the cycling stability. Here, K0.02 Na0.55 Mn0.70 Ni0.25 Zn0.05 O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn-Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the MnO bonding, thereby alleviating the anisotropic coupling between oxidized O2- and Mn4+ and improving the structural stability. K0.02 Na0.55 Mn0.70 Ni0.25 Zn0.05 O2 provided an initial discharge capacity of 57 mAh g-1 at 100 mA g-1 and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs.
RESUMO
Four-nitrogen-coordinated transitional metal (MN4) configurations in single-atom catalysts (SACs) are broadly recognized as the most efficient active sites in peroxymonosulfate (PMS)-based advanced oxidation processes. However, SACs with a coordination number higher than four are rarely explored, which represents a fundamental missed opportunity for coordination chemistry to boost PMS activation and degradation of recalcitrant organic pollutants. We experimentally and theoretically demonstrate here that five-nitrogen-coordinated Mn (MnN5) sites more effectively activate PMS than MnN4 sites, by facilitating the cleavage of the O-O bond into high-valent Mn(IV)-oxo species with nearly 100% selectivity. The high activity of MnN5 was discerned to be due to the formation of higher-spin-state N5Mn(IV)âO species, which enable efficient two-electron transfer from organics to Mn sites through a lower-energy-barrier pathway. Overall, this work demonstrates the importance of high coordination numbers in SACs for efficient PMS activation and informs the design of next-generation environmental catalysts.
Assuntos
Manganês , Peróxidos , Domínio Catalítico , Manganês/química , OxirreduçãoRESUMO
Searching for bifunctional noble-free electrocatalysts with high activity and stability are urgently demanded for the commercial application of zinc-air batteries (ZABs). Herein, the authors propose a controllable dual interface engineering concept to design a noble-metal-free bifunctional catalyst with two well-designed interfaces (Ni3 FeN|MnO and MnO|CNTs) via a simple etching and wet chemical route. The heterointerface between MnO and Ni3 FeN facilitates the charge transfer rate during surface reaction, and heterointerface between MnO and carbon nanotubes (CNTs) support provides effective electron transfer path, while the CNTs matrix builds free diffusion channels for gas and electrolyte. Benefiting from the advantages of dual interfaces, Ni3 FeN/MnO-CNTs show superior oxygen reduction reaction and oxygen evolution reaction catalytic activity with an ultralow polarization gap (∆E) of 0.73 V, as well as preferable durability and rapid reaction kinetics. As proof of concept, the practical ZAB with Ni3 FeN/MnO-CNT exhibits high power density of 197 mW cm-2 and rate performance up to 40 mA cm-2 , as well as superior cycling stability over 600 cycles, outperforming the benchmark mixture of Pt/C and RuO2 . This work proposes a controllable dual interface engineering concept toward regulating the charge, electron, and gas transfer to achieve efficient bifunctional catalysts for ZABs.
RESUMO
Perovskite oxides are intriguing electrocatalysts for the oxygen evolution reaction, but both surface (e.g., composition) and bulk (e.g., lattice oxygen) properties should be optimized to maximize their participation in offering favorable activity and durability. In this work, it is demonstrated that through introducing exogenous Fe3+ ( Fe exo 3 + ${\rm{Fe}}_{{\rm{exo}}}^{3 + }$ ) into the liquid electrolyte, not only is the reconstructed surface stabilized and optimized, but the lattice oxygen diffusion is also accelerated. As a result, compared to that in Fe-free 0.1 m KOH, PrBa0.5 Sr0.5 Co2 O5+δ in 0.1 m KOH + 0.1 mm Fe3+ demonstrates a tenfold increment in activity, an extremely low Tafel slope of ≈50 mV dec-1 , and outstanding stability at 10.0 mA cm-2 for 10 h. The superior activity and stability are further demonstrated in Zn-air batteries by presenting high open-circuit voltage, narrow potential gap, high power output, and long-term cycle stability (500 cycles). Based on experimental and theoretical calculations, it is discovered that the dynamical interaction between the Co hydr(oxy)oxide from surface reconstruction and intentional Fe3+ from the electrolyte plays an important role in the enhanced activity and durability, while the generation of a perovskite-hydr(oxy)oxide heterostructure improves the lattice oxygen diffusion to facilitate lattice oxygen participation and enhances the stability.
RESUMO
Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen-doped carbon, Co-N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP ), graphitic N (NG ), and pyrrolic N (NPY ). Co-N/C with the Co-N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc-air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co-N4 active sites, leading to the downshift of d-band center of Co-N4 and weakening the binding energies of the intermediates on Co-N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
RESUMO
Anode-supported protonic ceramic fuel cells (PCFCs) are highly promising and efficient energy conversion systems. However, several challenges need to be overcome before these systems are used more widely, including the poor sintering of recently developed proton-conducting oxides and the decreased proton conductivity due to detrimental reactions between the nickel from anode and the electrolyte occurring during high-temperature co-sintering. Herein, a Ni doping strategy to increase the electrolyte sintering, suppress the detrimental phase reactions, and generate stable Ni nanoparticles for enhanced performance is proposed. A nickel-doped perovskite oxide is developed with the nominal composition of Ba(Zr0.1 Ce0.7 Y0.1 Yb0.1 )0.95 Ni0.05 O3- δ . Acting as a sintering aid, such a small amount of nickel effectively improves the sintering of the electrolyte. Concomitantly, reactions between nickel and the Ni-doped ceramic phase are suppressed, turning detrimental phase reactions into benefits. The nickel doping further promotes the formation of Ni nanoparticles, which enhance the electrocatalytic activity of the anode toward the hydrogen oxidation reaction and improve the charge transfer across the anode-electrolyte interface. As a result, highly efficient PCFCs are developed. The innovative anode developed in this work also shows favorable activity toward ammonia decomposition, making it highly promising for use in direct ammonia fuel cells.
RESUMO
Liquid phase transmission electron microscopy (TEM) provides a useful means to study a wide range of dynamics in solution with near-atomic spatial resolution and sub-microsecond temporal resolution. However, it is still a challenge to control the chemical environment (such as the flow of liquid, flow rate, and the liquid composition) in a liquid cell, and evaluate its effect on the various dynamic phenomena. In this work, we have systematically demonstrated the flow performance of anin situliquid TEM system, which is based on 'on-chip flow' driven by external pressure pumps. We studied the effects of different chemical environments in the liquid cell as well as the electrochemical potential on the deposition and dissolution behavior of Cu crystals. The results show that uniform Cu deposition can be obtained at a higher liquid flow rate (1.38µl min-1), while at a lower liquid flow rate (0.1µl min-1), the growth of Cu dendrites was observed. Dendrite formation could be further promoted byin situaddition of foreign ions, such as phosphates. The generality of this technique was confirmed by studying Zn electrodeposition. Our direct observations not only provide new insights into understanding the nucleation and growth but also give guidelines for the design and synthesis of desired nanostructures for specific applications. Finally, the capability of controlling the chemical environment adds another dimension to the existing liquid phase TEM technique, extending the possibilities to study a wide range of dynamic phenomena in liquid media.
RESUMO
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Assuntos
Nanoestruturas , Nitrogênio , Adsorção , Amônia , Estudos ProspectivosRESUMO
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
RESUMO
Solid oxide cells (SOCs) have been considered as a promising energy conversion and storage device. However, state-of-the-art cells' practical application with conventionally fabricated Ni-(Y2O3)0.08(ZrO2)0.92 (YSZ) cermet hydrogen electrode and La0.8Sr0.2MnO3 perovskite oxygen electrode is strongly limited by the unsatisfactory performance. Instead, new advances in cell materials and fabrication techniques that can lead to significant performance enhancements are urgently demanded. Here, we report a high-performance reversible SOC that consisted of a combination of SrSc0.175Nb0.025Co0.8O3-δ (SSNC) and phase-inversion tape-casted Ni-YSZ, which served as the oxygen and hydrogen electrode, respectively. The hydrogen electrode synthesized from phase-inversion tape-casting showed a high porosity of 60.8%, providing sufficient active sites for hydrogen oxidation in the solid oxide fuel cell (SOFC) mode and H2O electrolysis in the solid oxide electrolysis cell (SOEC) mode. Accordingly, it was observed that the maximum power density of 2.3 W cm-2 was attained at 750 °C in SOFC mode and a current density of -1.59 A cm-2 was obtained at 1.3 V in SOEC mode. Hence, these results reveal that the simultaneous optimization of oxygen and hydrogen electrodes is a pragmatic strategy that improves the performance of SOCs, which may significantly accelerate the commercialization of such an attractive technology.